Identification and Genetic Evolution of Viruses Infecting Chili Peppers in Chifeng City, Inner Mongolia
-
摘要:
目的 系统检测内蒙古赤峰市辣椒主产区病毒发生种类,并分析病毒的遗传分化情况,以期为该地区辣椒病毒病精准防控提供理论依据。 方法 从内蒙古赤峰地区4个辣椒主产区采集疑似病毒侵染的辣椒样本47份,采用sRNA高通量测序技术结合生物信息学分析,以及常规RT-PCR检测,明确侵染辣椒的病毒种类及复合侵染情况;采用常规Sanger测序测定常规RT-PCR扩增片段序列,进行遗传进化分析。 结果 内蒙古赤峰地区4个辣椒主产区辣椒混合病样的sRNA高通量测序,共检测到6种病毒,常规RT-PCR共验证到其中4种病毒;4个地区病毒种类存在明显差异,松山区城子乡优势种类为BBWV2和PVY,喀喇沁旗锦山镇为PVY和PMMoV;宁城县和喀喇沁旗西桥镇为BBWV2;复合侵染类型以2种病毒复合侵染为主,复合侵染率最高达61.54%。对测定的序列系统发育分析表明,赤峰地区4个辣椒产区的PMMoV和BBWV2存在遗传分化,PVY可能出现了新的遗传型。 结论 内蒙古赤峰地区不同辣椒主产区发生的病毒种类、检出率和病毒复合侵染种类均存在明显差异。 Abstract:Objective Viruses that infected chili pepper crops in Chifeng City, Inner Mongolia were identified, and their genetic relationship analyzed. Methods The 47 infected chili pepper plants at 4 major producing areas in Chifeng City were diagnosed, and viruses identified by sRNA high-throughput sequencing with bioinformatic analysis and RT-PCR. Fragments of RT-PCR were sequenced using the Sanger method to conduct a phylogenetic analysis with the MEGA software. Results Six viruses were identified by sRNA high-throughput sequencing. Of which, 4 were re-verified by RT-PCR. The dominant viruses infecting the 4 regions differed significantly. They were BBWV2 and PVY in Chengzi County of Songshang District, PVY and PMMoV in Jinshan County of Kalaqin District, and BBWV2 in Ningchen County and Xijiao County of kalaqin District. When the infection was caused by multiple viruses, it was mostly by two major pathogens and had the highest rate of occurrence at 61.54%. The phylogenetic analysis on the sequenced nucleotides of the viruses showed distinctive genetic differences between PMMoV and BBWV2 and, possibly, PVY of a novel genetic type. Conclusion There are significant differences in the types of viruses, detection rates, and types of virus co-infections that occur in different chili production areas of Chifeng City in Inner Mongolia . -
表 1 sRNA测序数据质量
Table 1. Quality of data obtained by sRNA
样本
编号
Sample No原始
读数量
Reads/M原始
序列量
Bases /MGC含量
GC content/
%Q30/% 片段长度
Contig
number片段长
度中值
Contig N50CZ 12.14 607 52.34 97.45 284 157 KQ 13.34 667 48.28 97.46 394 182 NC 13.43 671 51.06 97.37 276 168 XQ 12.80 640 51.64 97.60 258 146 Q30:Phred 数值大于 30 的碱基占总体碱基的百分比。
Q30: Ratio of bases of Phred number over 30 in total bases.表 2 辣椒病毒检出率
Table 2. Positive viral detection rate on chili pepper plants
采样地点
Sampling site辣椒样本病毒检出率
Rates of positive detection of viruses in pepper plants/%SPVG PMMoV BBWV2 PVY INCV SCMV CZ 0 61.54 92.31 0 23.08 0 KQ 0 58.33 41.67 83.33 0 0 NC 0 25 58.33 0 0 0 XQ 0 20 30 0 0 0 表 3 辣椒病毒复合侵染率
Table 3. Occurrence rate of multiple viruses infection on chili pepper plants
采样地点
Sampling site病毒复合侵染种类
Viruses of fused infection病毒检出率
Rates of positive
detection of viruses/%CZ BBWV2+PMMoV 61.54 BBWV2+INCV 23.08 BBWV2+INCV+PMMoV 23.08 KQ PMMoV+BBWV2 41.67 PMMoV+PVY 58.33 BBWV2+PVY 41.67 PMMoV+BBWV2+PVY 25 NC PMMoV+BBWV2 25 XQ PMMoV+BBWV2 15.38 -
[1] 崔聪聪, 王秀芝, 张晓梅, 等. 赤峰市露地辣椒生产情况及经济效益调查分析 [J]. 现代农业科技, 2018, (24):92−93,95. doi: 10.3969/j.issn.1007-5739.2018.24.054CUI C C, WANG X Z, ZHANG X M, et al. Investigation and analysis on the production situation and economic benefit of pepper in Chifeng city [J]. Modern Agricultural Science and Technology, 2018(24): 92−93,95. (in Chinese) doi: 10.3969/j.issn.1007-5739.2018.24.054 [2] 张晓梅, 王秀芝, 崔聪聪, 等. 2018年赤峰地区设施辣椒生产与市场情况分析 [J]. 中国蔬菜, 2019, (3):89−92.ZHANG X M, WANG X Z, CUI C C, et al. Production and market analysis of protected pepper in Chifeng area in 2018 [J]. China Vegetables, 2019(3): 89−92. (in Chinese) [3] 柴阿丽, 陈利达, 曹金强, 等. 利用siRNA高通量测序和RT-PCR技术鉴定引起茄子斑驳紫花病的病毒种类 [J]. 园艺学报, 2019, 46(3):508−518.CHAI A L, CHEN L D, CAO J Q, et al. Identification of viruses causing eggplant purple mottle flower disease by sirna high-throughput sequencing and RT-PCR detection [J]. Acta Horticulturae Sinica, 2019, 46(3): 508−518. (in Chinese) [4] 刘勇, 李凡, 李月月, 等. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势 [J]. 中国农业科学, 2019, 52(2):239−261. doi: 10.3864/j.issn.0578-1752.2019.02.005LIU Y, LI F, LI Y Y, et al. Identification, distribution and occurrence of viruses in the main vegetables of China [J]. Chinese Agricultural Sciences, 2019, 52(2): 239−261. (in Chinese) doi: 10.3864/j.issn.0578-1752.2019.02.005 [5] SKELTON A, UZAYISENGA B, FOWKES A, et al. First report of Pepper veinal mottle virus, pepper yellows virus and a novel enamovirus in chilli pepper (Capsicum sp. ) in Rwanda [J]. New Disease Reports, 2018, 37(1): 5. doi: 10.5197/j.2044-0588.2018.037.005 [6] 冯耿, 辛敏, 曹孟籍, 等. 深度测序发现贵阳发生的辣椒病毒病由多种病毒复合侵染所致 [J]. 植物病理学报, 2017, 47(5):591−597.FENG G, XIN M, CAO M J, et al. Identification of multiple viruses infecting hot pepper in Guiyang by deep sequencing [J]. Acta Phytopathologica Sinica, 2017, 47(5): 591−597. (in Chinese) [7] 廖震, 赵德刚, 赵懿琛. 利用小RNA深度测序技术检测分析小黄姜病毒 [J]. 基因组学与应用生物学, 2018, 37(6):2417−2422.LIAO Z, ZHAO D G, ZHAO Y C. Detection and analysis of viruses from small yellow ginger (Zingiber officinale Rosc. ) by small RNA deep sequencing technology [J]. Genomics and Applied Biology, 2018, 37(6): 2417−2422. (in Chinese) [8] 汤亚飞, 裴凡, 李正刚, 等. 基于小RNA深度测序技术鉴定侵染广东辣椒的病毒种类 [J]. 中国农业科学, 2019, 52(13):2256−2267. doi: 10.3864/j.issn.0578-1752.2019.13.006TANG Y F, PEI F, LI Z G, et al. Identification of viruses infecting peppers in Guangdong by small RNA deep sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256−2267. (in Chinese) doi: 10.3864/j.issn.0578-1752.2019.13.006 [9] 于海龙, 靳远, 刘婧, 等. 我国辣椒病毒病发生情况及发展趋势: 基于2018年和2019年辣椒主产区的调查 [J]. 中国蔬菜, 2020, (9):25−30.YU H L, JIN Y, LIU J, et al. Occurrence and development trend of pepper virus disease in China—based on main pepper producing areas investigation in 2018 and 2019 [J]. China Vegetables, 2020(9): 25−30. (in Chinese) [10] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25 [11] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022−3027. doi: 10.1093/molbev/msab120 [12] VISSER M, BESTER R, BURGER J T, et al. Next-generation sequencing for virus detection: covering all the bases [J]. Virology Journal, 2016, 13: 85. doi: 10.1186/s12985-016-0539-x [13] SANTALA J, VALKONEN J P T. Sensitivity of small RNA-based detection of plant viruses [J]. Frontiers in Microbiology, 2018, 9: 939. doi: 10.3389/fmicb.2018.00939 [14] GARCÍA-ARENAL F, FRAILE A, MALPICA J M. Variability and genetic structure of plant virus populations [J]. Annual Review of Phytopathology, 2001, 39: 157−186. doi: 10.1146/annurev.phyto.39.1.157 [15] 李桑桑, 胡荣, 罗香文, 等. 湖北和广西辣椒脉斑驳病毒的检测及 遗传多样性分析 [J]. 南方农业学报, 2020, 51(7):1693−1698. doi: 10.3969/j.issn.2095-1191.2020.07.023LI S S, HU R, LUO X W, et al. Detection and genetic identity of Pepper veinal mottle virus in Hubei and Guangxi [J]. Journal of Southern Agriculture, 2020, 51(7): 1693−1698. (in Chinese) doi: 10.3969/j.issn.2095-1191.2020.07.023 [16] 汤亚飞, 裴凡, 于琳, 等. 侵染广东辣椒的辣椒脉斑驳病毒的分子特征 [J]. 园艺学报, 2018, 45(11):2209−2216.TANG Y F, PEI F, YU L, et al. Molecular characterization of Chilli veinal mottle virus infecting pepper in Guangdong province [J]. Acta Horticulturae Sinica, 2018, 45(11): 2209−2216. (in Chinese) [17] PICARD C, DALLOT S, BRUNKER K, et al. Exploiting genetic information to trace plant virus dispersal in landscapes [J]. Annual Review of Phytopathology, 2017, 55: 139−160. doi: 10.1146/annurev-phyto-080516-035616 [18] VASSILAKOS N, SIMON V, TZIMA A, et al. Genetic determinism and evolutionary reconstruction of a host jump in a plant virus [J]. Molecular Biology and Evolution, 2016, 33(2): 541−553. doi: 10.1093/molbev/msv222 [19] FERRER R M, FERRIOL I, MORENO P, et al. Genetic variation and evolutionary analysis of broad bean wilt virus 2 [J]. Archives of Virology, 2011, 156(8): 1445−1450. doi: 10.1007/s00705-011-0990-3 [20] GUAN X Y, YANG C X, FU J J, et al. Rapid evolutionary dynamics of pepper mild mottle virus [J]. Virus Research, 2018, 256: 96−99. doi: 10.1016/j.virusres.2018.08.006 [21] GAO F L, ZOU W C, XIE L H, et al. Adaptive evolution and demographic history contribute to the divergent population genetic structure of Potato virus Y between China and Japan [J]. Evolutionary Applications, 2017, 10(4): 379−390. doi: 10.1111/eva.12459 [22] 龚明霞, 赵虎, 王萌, 等. 广西辣椒病毒病调查及病原种类初步鉴定 [J]. 中国蔬菜, 2020, (4):74−79.GONG M X, ZHAO H, WANG M, et al. Investigation and preliminary identification of pathogeny species of pepper virus disease in Guangxi [J]. China Vegetables, 2020(4): 74−79. (in Chinese) [23] 郭思瑶, 童艳, 黄娅, 等. 重庆辣椒病毒病病原初步鉴定和分析 [J]. 园艺学报, 2015, 42(2):263−270.GUO S Y, TONG Y, HUANG Y, et al. Preliminary identification and analyses of viruses causing pepper virus disease in Chongqing, China [J]. Acta Horticulturae Sinica, 2015, 42(2): 263−270. (in Chinese) [24] 王少立, 谭玮萍, 杨园园, 等. 山东省辣椒主要病毒种类的分子检测与鉴定 [J]. 中国农业科学, 2017, 50(14):2728−2738. doi: 10.3864/j.issn.0578-1752.2017.14.009WANG S L, TAN W P, YANG Y Y, et al. Molecular detection and identification of main viruses on pepper in Shandong Province [J]. Scientia Agricultura Sinica, 2017, 50(14): 2728−2738. (in Chinese) doi: 10.3864/j.issn.0578-1752.2017.14.009 [25] 姚玉荣, 陈国华, 冯兰香, 等. 北运蔬菜基地辣椒病毒病病原种类的分子检测 [J]. 中国蔬菜, 2013, (10):84−89. doi: 10.3969/j.issn.1000-6346.2013.10.014YAO Y R, CHEN G H, FENG L X, et al. Molecular detection of pepper viruses in southern vegetable production bases [J]. China Vegetables, 2013(10): 84−89. (in Chinese) doi: 10.3969/j.issn.1000-6346.2013.10.014 [26] PEÑAFLOR M F G V, MAUCK K E, ALVES K J, et al. Effects of single and mixed infections of Bean pod mottle virus and Soybean mosaic virus on host-plant chemistry and host–vector interactions [J]. Functional Ecology, 2016, 30(10): 1648−1659. doi: 10.1111/1365-2435.12649 [27] LAMICHHANE J R, VENTURI V. Synergisms between microbial pathogens in plant disease complexes: A growing trend [J]. Frontiers in Plant Science, 2015, 6: 385. [28] SAFARI M, ROOSSINCK M J. Coevolution of a persistent plant virus and its pepper hosts [J]. Molecular Plant-Microbe Interactions, 2018, 31(7): 766−776. doi: 10.1094/MPMI-12-17-0312-R