• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑木耳水提物和粗多糖溶液的流变特性及饮料开发

吴俐 陈寿辉 李怡彬 赖谱富 肖正 陈君琛

吴俐,陈寿辉,李怡彬,等. 黑木耳水提物和粗多糖溶液的流变特性及饮料开发 [J]. 福建农业学报,2023,38(10):1163−1175 doi: 10.19303/j.issn.1008-0384.2023.10.005
引用本文: 吴俐,陈寿辉,李怡彬,等. 黑木耳水提物和粗多糖溶液的流变特性及饮料开发 [J]. 福建农业学报,2023,38(10):1163−1175 doi: 10.19303/j.issn.1008-0384.2023.10.005
WU L, CHEN S - H, LI Y - B, et al. Rheological Properties of Water Extract and Crude Polysaccharide Solution of Auricularia auricula and Beverage Development [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1163−1175 doi: 10.19303/j.issn.1008-0384.2023.10.005
Citation: WU L, CHEN S - H, LI Y - B, et al. Rheological Properties of Water Extract and Crude Polysaccharide Solution of Auricularia auricula and Beverage Development [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1163−1175 doi: 10.19303/j.issn.1008-0384.2023.10.005

黑木耳水提物和粗多糖溶液的流变特性及饮料开发

doi: 10.19303/j.issn.1008-0384.2023.10.005
基金项目: 福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021014);福建省现代食用菌产业技术体系建设项目(闽财指〔2019〕897号);福建省科技计划项目(2023R1099、2023R1100、2023R1030005、2022C0028);福建省农业科学院科技创新团队建设项目(CXTD2021018-2);福建省农业科学院青年英才项目(YC2021012)
详细信息
    作者简介:

    吴俐(1985 —),女,博士,助理研究员,主要从事食用菌加工技术及功能食品研究,E-mail:565108633@qq.com

    通讯作者:

    陈君琛(1959— ),男,研究员,主要从事食用菌精深加工技术研究,E-mail: junchencc@sina.com

  • 中图分类号: S646.9

Rheological Properties of Water Extract and Crude Polysaccharide Solution of Auricularia auricula and Beverage Development

  • 摘要:   目的  研究黑木耳水提物(Auricularia auricula water extract, AWE)和黑木耳粗多糖(Auricularia auricula crude polysaccharide, ACP)溶液的流变特性,优化饮料配方,为黑木耳饮料的开发提供科技支撑。  方法  观察不同质量浓度和均质压力下AWE和ACP溶液的流变特性;采用单因素和正交试验优化黑木耳饮料配方。  结果  0.3%~1.5%的AWE与ACP溶液都具有明显的剪切稀化特征,表现为假塑性流体,且为非牛顿流体;随着AWE与ACP质量浓度的降低,其流动行为指数增加,稠度系数降低(P < 0.05),0.3%~ 0.6%AWE溶液和0.3%ACP溶液呈现稳定的流体特性。4~12 MPa均质处理显著提高0.6%AWE和ACP溶液的流动行为指数,同时降低稠度系数,均呈现稳定的流体特性;相同均质压力下0.6%AWE比ACP溶液的黏度更低、流动性更佳。8 MPa均质压力处理的0.6% AWE溶液的平均粒径(6.51 ± 0.02 )μm和稳定系数(0.926 ± 0.024)达到平衡。单因素和正交试验优化黑木耳饮料配方为:AWE 0.6%、冰糖6%以及柠檬酸0.1%;饮料呈浅褐色,具黑木耳特有风味,口感细腻丝滑。  结论  0.3%~1.5%AWE和ACP溶液均为假塑性流体,且为非牛顿流体;4~12 MPa均质提高了0.6%的AWE和ACP溶液流动性,8MPa均质处理0.6%AWE溶液体系的稳定性最佳,从而确定黑木耳饮料加工以0.6%AWE为生产原料,采用8 MPa作为均质压力。黑木耳饮料最佳配方为:AWE 0.6%、冰糖6%以及柠檬酸0.1%。
  • 图  1  黑木耳饮料生产工艺流程

    Figure  1.  Production process of A. auricula beverage

    图  2  不同质量浓度AWE和ACP溶液的流变特性曲线

    A:AWE溶液;B:ACP溶液。图3、5同。

    Figure  2.  Rheological characteristic curves of AWE and ACP solutions with different concentrations

    A: AWE solution ; B: ACP solution.The same as Fig.3、5

    图  3  不同质量浓度AWE和ACP溶液的线性黏弹区

    Figure  3.  Linear viscoelastic zones of AWE and ACP solutions at different concentrations

    图  4  不同质量浓度AWE和ACP溶液在角频率下储存模量、损耗模量和损耗角正切的变化

    A~C:0.6%的AWE溶液的储存模量、损耗模量和损耗角正切;D~F:0.6%ACP溶液的储存模量、损耗模量和损耗角正切。

    Figure  4.  Changes of storage modulus, loss modulus and loss tangent of AWE and ACP solution with different mass concentration

    A~C: Storage modulus, loss modulus and loss tangent of 0.6% AWE solution. D~F: Storage modulus, loss modulus and loss tangent of 0.6% ACP solution.

    图  5  不同质量浓度AWE和ACP溶液的黏温曲线

    Figure  5.  Variation of viscosity of different concentration of AWE and ACP solution with temperature

    图  6  不同均质压力下AWE和ACP溶液的流变特性曲线

    A:0.6%的AWE溶液;B:0.6%的ACP溶液。图8同。

    Figure  6.  Rheological characteristic curves of AWE and ACP solution under different homogenization pressure

    A: 0.6% AWE solution; B: 0.6% ACP solution.The same as Fig.8.

    图  7  不同均质压力下AWE和ACP储存模量、损耗模量和损耗角正切的变化

    A~C:0.6%的AWE溶液的储存模量、损耗模量和损耗角正切;D~F:0.6%的ACP溶液的储存模量、损耗模量和损耗角正切。

    Figure  7.  Changes of storage modulus, loss modulus and loss tangent of A. auricula solution under different homogeneous pressures

    A~C: Storage modulus, loss modulus and loss tangent of 0.6% AWE solution. D~F: Storage modulus, loss modulus and loss tangent of 0.6% ACP solution.

    图  8  不同均质压力下AWE和ACP黏度随温度的变化

    Figure  8.  Variation of the viscosity of A. auricula solution with temperature under different homogenization pressures

    图  9  不同均质压力对平均粒径与稳定系数的影响

    同一指标不同小写字母表示差异显著(P<0.05),图1011同。

    Figure  9.  Effect of different homogenization pressure on average particle size and stability coefficient

    Different letters on the same index mean significant difference (P<0.05). The same for Fig.10, 11.

    图  10  冰糖添加量对感官评分的影响

    Figure  10.  The effect of rock sugar addition on sensory score

    图  11  柠檬酸添加量对感官评分的影响

    Figure  11.  Effect of citric acid addition on sensory score

    表  1  正交试验因素和水平

    Table  1.   Factors and levels of orthogonal tests

    水平
    Levels
    A黑木耳水提物
    AWE/%
    B柠檬酸
    Citric acid/%
    C冰糖
    Rock sugar/%
    10.30.055
    20.60.106
    30.90.157
    下载: 导出CSV

    表  2  黑木耳饮料感官质量评分标准

    Table  2.   Sensory quality scoring criteria for wood ear beverage

    评分指标
    Scoring indicators
    评分标准
    Scoring criteria
    评分
    Score/分
    色泽(3分)
    Color (3 points)
    均匀一致的淡褐色 2~3
    淡褐色或深褐色,颜色较深或较浅,不够均匀 1~2
    颜色过深或过浅且不均匀 0~1
    黏稠度(3分)
    Viscosity (3 points)
    粘稠适中 2~3
    过于黏稠 0~2
    无黏稠感 0~2
    风味(4分)
    Flavor (4 points)
    有淡淡黑木耳风味,香气和谐,酸甜适中,味清口爽 3~4
    黑木耳风味稍显不足,偏甜、偏酸或
    偏淡
    2~3
    香气和滋味不协调,太甜、太酸或
    太淡
    0~1
    下载: 导出CSV

    表  3  不同质量浓度AWE和ACP溶液的Power Law方程拟合参数

    Table  3.   Parameters for fitting the Power Law equation for different concentration of AWE and ACP solution

    溶液
    Solution
    质量浓度
    Concent/%
    稠度系数k
    Consistency
    coefficient k/
    (Pa·sn)
    流动行为指数n
    Flow behavior
    index n
    相关系数R2
    Correlation
    coefficient R2
    黑木耳水提物
    AWE
    0.367.70±1.34 e0.69±0.01 a0.983
    0.6242.83±3.58 d0.57±0.01 b0.9959
    0.9602.40±7.98 c0.48±0.01 c0.9981
    1.21084.93±11.82 b0.41±0.01 d0.9991
    1.51614.24±22.36 a0.38±0.01 d0.9987
    黑木耳粗多糖
    ACP
    0.3231.91±4.14 e0.62±0.01 a0.9916
    0.6980.69±11.85 d0.49±0.01 b0.9983
    0.92531.91±24.42 c0.41±0.01 c0.9993
    1.24692.93±38.90 b0.39±0.00 c0.9995
    1.57138.29±28.68 a0.35±0.00 d0.9999
    同列数据后不同小写字母表示不同处理间差异显著(P < 0.05),下同。
    Different lowercase letters superscribing the same indicator in the same column indicate significant differences (P < 0.05), the same below.
    下载: 导出CSV

    表  4  不同均质压力下0.6%AWE和ACP溶液的 Power Law方程拟合参数

    Table  4.   Parameters for fitting the Power Law equation of 0.6% AWE and ACP solution under different homogenization pressures

    溶液
    Solution
    均质压力
    Homogeneous
    pressure/MPa
    稠度系数k
    Consistency
    coefficient k/
    (Pa·sn)
    流动行为指数n
    Flow behavior
    index n
    相关系数 R2
    Correlation
    coefficient
    R2
    黑木耳水提物
    AWE
    0242.83 ± 3.58 a0.57 ± 0.01 c0.9959
    493.89 ± 2.12 b0.76 ± 0.01 b0.9639
    851.99 ± 2.61 c0.85 ± 0.02 a0.7339
    1243.40 ± 0.69 d0.81 ± 0.01 a0.9725
    黑木耳粗多糖
    ACP
    0980.69 ± 11.85 a0.50 ± 0.01 d0.9983
    4462.41 ± 11.83 b0.63 ± 0.01 c0.9824
    8179.54 ± 4.79 c0.75 ± 0.01 b0.9545
    1285.60 ± 3.37 d0.83 ± 0.02 a0.8461
    下载: 导出CSV

    表  5  L9(33)正交试验结果

    Table  5.   L9 (33) Orthogonal design scheme and results

    试验号
    Test number
    A黑木耳水提物
    AWE
    B冰糖
    Rock
    sugar
    C柠檬酸
    Citric
    acid
    感官评分
    Sensory score
    11116.7±0.2
    21227.3±0.3
    31337.1±0.1
    42238.0±0.5
    52317.9±0.3
    62128.2±0.4
    73327.4±0.1
    83136.9±0.2
    93217.2±0.4
    K121.1021.8021.80
    K224.1022.5022.90
    K321.5022.4022.00
    k17.037.277.27
    k28.037.507.63
    k37.177.477.33
    极小值
    Minimum value
    7.037.277.27
    极大值
    Maximum value
    8.037.507.63
    极差R
    Range R
    1.000.230.37
    主次因素
    Primary and
    secondary factors
    A > C > B
    最优组合
    Optimal combination
    A2C2B2
    下载: 导出CSV

    表  6  方差分析结果

    Table  6.   Results of variance analysis

    方差来源
    Source
    平方和
    Sum of
    squares
    自由度
    Degree of
    freedom
    均方
    Mean
    square
    F
    F value
    P
    P value
    A1.7688920.884449.750.0197 *
    B0.0955620.04782.68750.2712
    C0.2288920.11446.43750.1345
    D空白
    D Blank
    0.0355620.0178
    总和
    Total
    0.36
    “*”表示在0.05水平差异显著。
    "*" indicates a significant difference at the 0.05 level.
    下载: 导出CSV
  • [1] 刘炜, 刘行, 杨晓凤, 等. 不同产地黑木耳中氨基酸含量的测定及主成分分析 [J]. 食品安全质量检测学报, 2021, 12(20):8068−8075.

    LIU W, LIU X, YANG X F, et al. Determination of amino acid content and principal component analysis of Auricularia auricula from different regions [J]. Journal of Food Safety & Quality, 2021, 12(20): 8068−8075.(in Chinese)
    [2] LIU Q, AN X, CHEN Y, et al. Effects of Auricularia auricula polysaccharides on gut microbiota and metabolic phenotype in mice [J]. Foods, 2022, 11(17): 2700. doi: 10.3390/foods11172700
    [3] 张廷婷, 赵文颖, 谢倍珍, 等. 黑木耳及其多糖对高脂饮食大鼠的降血脂和肠道菌群调节作用 [J]. 中国食品学报, 2021, 21(9):89−101.

    ZHANG T T, ZHAO W Y, XIE B Z, et al. Effects of Auricularia auricula and its polysaccharides on hypolipidemic and regulating intestinal flora in high-fat diet rats [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 89−101.(in Chinese)
    [4] 郝敏, 李殿龙, 徐俊亭, 等. 黑木耳胞外多糖对小鼠肠道微生态及免疫调节的影响 [J]. 中国食品学报, 2021, 21(3):63−70.

    HAO M, LI D L, XU J T, et al. Effects of exopolysaccharides from Auricularia auricula-judae on the intestine microecology and immunomodulatory in mice [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3): 63−70.(in Chinese)
    [5] 罗敬文, 司风玲, 顾子玄, 等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析 [J]. 食品科学, 2018, 39(19):64−69.

    LUO J W, SI F L, GU Z X, et al. Antioxidant and antimicrobial activities of polysaccharides from three species of Auricularia [J]. Food Science, 2018, 39(19): 64−69.(in Chinese)
    [6] ZHANG Y K, SHI Q W, JIANG W, et al. Comparison of the chemical composition and antioxidant stress ability of polysaccharides from Auricularia auricula under different drying methods [J]. Food & Function, 2022, 13(5): 2938−2951.
    [7] MIAO J N, REGENSTEIN J M, QIU J Q, et al. Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-a review [J]. International Journal of Biological Macromolecules, 2020, 150: 102−113. doi: 10.1016/j.ijbiomac.2020.02.054
    [8] BIAN C, WANG Z Y, SHI J. Extraction optimization, structural characterization, and anticoagulant activity of acidic polysaccharides from Auricularia auricula- judae [J]. Molecules, 2020, 25(3): 710. doi: 10.3390/molecules25030710
    [9] 王鹏, 郭丽, 周凤超, 等. 黑木耳提取液流变学性质研究 [J]. 北方园艺, 2013(24):146−149.

    WANG P, GUO L, ZHOU F C, et al. Study on rheological properties of black fungus extract [J]. Northern Horticulture, 2013(24): 146−149.(in Chinese)
    [10] 税东宁. 复合型木耳饮料的工艺开发及产品特性研究[D]. 大连: 大连工业大学, 2021.

    SHUI D N. Technology development and product characteristics of compound fungus beverage [D] Dalian: Dalian University of Technology, 2021. (in Chinese)
    [11] 陈慧, 陈义勇. 白背毛木耳多糖的流变特性研究 [J]. 食品工业, 2016, 37(2):43−47.

    CHEN H, CHEN Y Y. Rheological properties of polysaccharides from Auricularia polytricha [J]. The Food Industry, 2016, 37(2): 43−47.(in Chinese)
    [12] 晏飞利, 刘丹, 陈艾萌, 等. 高压均质对天冬饮料稳定性的影响及其粒径表征 [J]. 现代食品, 2022, 28(11):63−66.

    YAN F L, LIU D, CHEN A M, et al. Effect of high pressure homogenization on stability of Asparagus beverage and its particle size characterization [J]. Modern Food, 2022, 28(11): 63−66.(in Chinese)
    [13] 刘孝平. 关键加工工艺对罗望子浊汁活性物质及品质的影响[D]. 雅安: 四川农业大学, 2020.

    LIU X P. Effects of key processing technology on active substances and quality of tamarind turbid juice[D]. Ya'an: Sichuan Agricultural University, 2020. (in Chinese)
    [14] 刘洁. 加工工艺对百合浊汁品质特性的影响[D]. 长沙: 湖南大学, 2020.

    LIU J. Effect of processing technology on quality characteristics of lily cloudy juice[D]. Changsha: Hunan University, 2020. (in Chinese)
    [15] 徐柔. 秋葵多糖基本结构和流变学特征及高压均质对其结构的影响[D]. 南昌: 南昌大学, 2019.

    XU R. Basic structural and rheological characteristics of polysaccharide from okra(Abelmoschus esculentus(L. )moench) and the effect of high pressure homogenization on its structure[D]. Nanchang: Nanchang University, 2019. (in Chinese)
    [16] 王德芝, 刘学彦. 灵芝功能饮料的稳定性研究 [J]. 中国食用菌, 2004, 23(4):47−48.

    WANG D Z, LIU X Y. Study on stability of Ganoderma lucidum functional drink [J]. Edible Fungi of China, 2004, 23(4): 47−48.(in Chinese)
    [17] 周香怀, 丁保淼. 脂质体对黄原胶流变特性的影响 [J]. 食品科技, 2022, 47(3):284−289.

    ZHOU X H, DING B M. Effect of liposomes on the rheological properties of xanthan gum [J]. Food Science and Technology, 2022, 47(3): 284−289.(in Chinese)
    [18] 林梦涵, 赵大鹏, 付坤铭, 等. 黑木耳红枣复合果肉饮料的工艺研究 [J]. 人参研究, 2022, 34(2):46−49.

    LIN M H, ZHAO D P, FU K M, et al. Study on technology of Auricularia auricula and red jujube compound pulp beverage [J]. Ginseng Research, 2022, 34(2): 46−49.(in Chinese)
    [19] 肖敏, 丁燕, 魏彦梅. 正交试验法优化火龙果黑木耳复合饮料配方的研究 [J]. 湖南农业科学, 2022(10):61−65.

    XIAO M, DING Y, WEI Y M. An optimization on the compound beverage of pitaya fruit and black fungus by orthogonal test [J]. Hunan Agricultural Sciences, 2022(10): 61−65.(in Chinese)
    [20] 雷琬琬, 吴秀宁, 徐芳琴, 等. 黑木耳复合饮料的制备及其抗氧化性研究 [J]. 安徽农学通报, 2023, 29(15):119−125.

    LEI W W, WU X N, XU F Q, et al. Study on preparation and antioxidant activity of Auricularia auricula compound beverage [J]. Anhui Agricultural Science Bulletin, 2023, 29(15): 119−125.(in Chinese)
    [21] 杨曦. 基于混合食品多糖体系的凝胶特性及调控机制[D]. 西安: 陕西师范大学, 2020.

    YANG X. Gel characteristics and regulation mechanism based on mixed food polysaccharide system[D]. Xi'an: Shaanxi Normal University, 2020. (in Chinese)
    [22] 李盛, 许淑琴, 张俐娜. 菌类多糖链构象及其表征方法研究进展 [J]. 高分子学报, 2010(12):1359−1375.

    LI S, XU S Q, ZHANG L N. Advances in conformations and characterizations of fungi polysaccharides [J]. Acta Polymerica Sinica, 2010(12): 1359−1375.(in Chinese)
    [23] 王银平. 玉木耳多糖的制备、结构表征及其与乳清蛋白相互作用研究[D]. 长春: 吉林大学, 2020.

    WANG Y P. Preparation and structural characterization of polysaccharides from Auricularia cornea Var. Li. and their interactions with whey protein[D]. Changchun: Jilin University, 2020. (in Chinese)
    [24] HANSOGE N K, GUPTA A, WHITE H, et al. Universal relation for effective interaction between polymer-grafted nanoparticles [J]. Macromolecules, 2021, 54(7): 3052−3064. doi: 10.1021/acs.macromol.0c02600
    [25] ROGERS S A, PARK J D, LEE C W J. Instantaneous dimensionless numbers for transient nonlinear rheology [J]. Rheologica Acta, 2019, 58(8): 539−556. doi: 10.1007/s00397-019-01150-2
    [26] 时静, 邓红, 俞清青. 不同因素对平菇多糖流变学特性的影响 [J]. 广东轻工职业技术学院学报, 2018, 17(2):11−14.

    SHI J, DENG H, YU Q Q. Effects of different factors on rheological properties of Pleurotus ostreatus polysaccharides [J]. Journal of Guangdong Industry Polytechnic, 2018, 17(2): 11−14.(in Chinese)
    [27] LIN L H, SHEN M Y, LIU S C, et al. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics [J]. International Journal of Biological Macromolecules, 2018, 107: 1591−1598. doi: 10.1016/j.ijbiomac.2017.10.029
    [28] ZHOU R, BAO H H, KANG Y H. Synergistic rheological behavior and morphology of yam starch and Auricularia auricula-judae polysaccharide-composite gels under processing conditions [J]. Food Science and Biotechnology, 2017, 26(4): 883−891. doi: 10.1007/s10068-017-0122-2
    [29] YANG J D, LIU T T, ZHANG S S, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis [J]. Food Science, 2019, 40(14): 289−295.
    [30] 赵秀婷, 宋志萍, 付萌, 等. 食品加工技术影响多糖构效关系和溶液行为的研究进展 [J]. 粮油食品科技, 2021, 29(3):78−86.

    ZHAO X T, SONG Z P, FU M, et al. Advances on the effect of processing technology on structure activity relationship and solution behavior of polysaccharides [J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(3): 78−86.(in Chinese)
    [31] 杨春瑜, 姜启兴, 夏文水, 等. 黑木耳超微粉多糖相对分子质量分布及降血脂功能研究 [J]. 中国食品学报, 2008, 8(6):23−32.

    YANG C Y, JIANG Q X, XIA W S, et al. Relative molecular weight distribution and reducing blood lipid function of polysaccharides in ultra-fine grinding powder of Auricularia auricula [J]. Journal of Chinese Institute of Food Science and Technology, 2008, 8(6): 23−32.(in Chinese)
    [32] 龚劲松, 袁峰, 袁兵兵, 等. 高压均质法提取药用真菌多糖的研究 [J]. 生物学杂志, 2018, 35(4):29−33.

    GONG J S, YUAN F, YUAN B B, et al. The investigation on extraction of fungal polysaccharide via high-pressure homogenization strategy [J]. Journal of Biology, 2018, 35(4): 29−33.(in Chinese)
    [33] 胡俊飞. 高压均质降解黑木耳多糖硫酸酯化衍生物抗辐射作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    HU J F. The radioprotective effect of sulfated Auricularia auricula polysaccharide degraded by high pressure homogenization[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [34] 徐伟, 王贵新. 均质对毛酸浆果汁稳定性的影响及其粒径形态表征 [J]. 食品科学, 2016, 37(4):68−72.

    XU W, WANG G X. Effect of homogenization on the stability of Physalis pubescens L. juice and characterization of its particle size and morphology [J]. Food Science, 2016, 37(4): 68−72.(in Chinese)
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  166
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-09-10
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回