• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

臭椿枝叶化学成分抗烟草花叶病毒活性研究

吴江梅 左安建 邹正彪 刘洋 张威 符滔 闫晓慧 胡世俊

吴江梅,左安建,邹正彪,等. 臭椿枝叶化学成分抗烟草花叶病毒活性研究 [J]. 福建农业学报,2023,38(4):454−460 doi: 10.19303/j.issn.1008-0384.2023.04.009
引用本文: 吴江梅,左安建,邹正彪,等. 臭椿枝叶化学成分抗烟草花叶病毒活性研究 [J]. 福建农业学报,2023,38(4):454−460 doi: 10.19303/j.issn.1008-0384.2023.04.009
WU J M, ZUO A J, ZOU Z B, et al. Anti-TMV Activity of Chemicals in Leaves and Branches of Ailanthus altissima [J]. Fujian Journal of Agricultural Sciences,2023,38(4):454−460 doi: 10.19303/j.issn.1008-0384.2023.04.009
Citation: WU J M, ZUO A J, ZOU Z B, et al. Anti-TMV Activity of Chemicals in Leaves and Branches of Ailanthus altissima [J]. Fujian Journal of Agricultural Sciences,2023,38(4):454−460 doi: 10.19303/j.issn.1008-0384.2023.04.009

臭椿枝叶化学成分抗烟草花叶病毒活性研究

doi: 10.19303/j.issn.1008-0384.2023.04.009
基金项目: 国家自然科学基金项目(32160378);云南省应用基础研究重点项目(2019FA011);云南省高层次人才项目(YNWR-QNBJ-2018-300)
详细信息
    作者简介:

    吴江梅(1997−),女,硕士研究生,研究方向:农业有害生物综合防控(E-mail:1239350410@qq.com

    通讯作者:

    闫晓慧(1980−),女,博士,教授,研究方向:植物活性成分(E-mail:luckyyxh@163.com

    胡世俊(1977−),男,博士,副教授,研究方向:入侵植物(E-mail:shijunhu@126.com

  • 中图分类号: S482.1

Anti-TMV Activity of Chemicals in Leaves and Branches of Ailanthus altissima

  • 摘要:   目的  对臭椿(Ailanthus altissima)化学成分及其抗烟草花叶病毒(TMV)活性进行研究,为开发新型植物病毒抑制剂提供理论依据。  方法  综合运用硅胶、凝胶、MCI等多种柱层析方法对臭椿枝叶正丁醇提取物化学成分进行分离,利用NMR、MS鉴定其结构;以TMV为供试病毒,采用半叶枯斑法从保护活性、治疗活性、钝化活性等3个方面评估化合物的生物活性。  结果  从臭椿枝叶正丁醇提取物中分离鉴定了17个化合物,根据其理化性质以及波谱数据分别鉴定为:山奈酚(Kaempferol) (1)、(2S)-3-O-Octadeca-9Z,12Z,15Z-trienoylgycery-O-β-D-galactopyranoside (2)、正二十六烷(Hexacosane) (3)、6,9,12-Octadecatrienoic acid (4)、Eichlerianic acid (5)、 Colocasinol A (6)、咖啡酸二十烷酯(Caffeic acid eicosanyl ester) (7)、Acernikol (8)、(-)-Sakuyayesinol (9)、(14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cylomalabarican-3-one (10)、Pinnata E(11)、morin-3-O-α-rhamnopyranoside(12)、Trans-syringin (13)、姜糖脂A(Gingerglycolipid A) (14)、姜糖脂B(gingerglycolipid B)(15)、benzyl 2-O-β-apiofuranosyl-(1→2)-β-D-glucopyranosyl-2,6-dihydroxy-benzoate (16)、picrorhizoside C (17)。化合物2、14、15为首次从该植物中分离得到。在质量浓度为50 μg·mL-1时,化合物6、8、13、14对TMV的钝化活性较为显著,抑制率均在50%以上,与阳性对照药剂宁南霉素无显著差异,分别为木脂素类化合物、木脂素类化合物、苯丙素类化合物和半乳糖脂类化合物。  结论  从臭椿枝叶中分离得到的17个化合物,均对TMV具有抑制作用,部分半乳糖脂类化合物、木脂素类化合物、苯丙素类化合物对TMV有显著的钝化作用,研究结果丰富了臭椿抗TMV活性物质的范畴,也为今后开发新型植物病毒抑制剂提供了科学依据。
  • 图  1  化合物1-17的分离流程

    Figure  1.  Flow diagram on separating chemicals in n-butanol extract of A.altissima leaves and branches

    图  3  化合物2、7和11对TMV侵染的治疗效应

    a:化合物2 的治疗作用;b:化合物7的治疗作用;c:化合物11的治疗作用。

    Figure  3.  Curative effects of Compounds 2, 7, and 11 against TMV infection

    a: Curative effect of Compound 2; b: Curative effect of Compound 7; c: Curative effect of Compound 11;

    图  4  化合物6、13和14对TMV侵染的钝化作用

    a化合物6 的钝化作用;b化合物13 的钝化作用;c化合物14的钝化作用

    Figure  4.  TMV-inactivation effects of Compounds 6, 13, and 14

    a: TMV-inactivation effect of Compound 6; b: inactivation effect of Compound 13; c: inactivation effect of compound 14.

    表  1  化合物1~17对TMV的保护作用

    Table  1.   Anti-TMV effects of 17 compounds

    化合物
    Compound
    处理平均
    枯斑数
    Local lesions of
    treatment
    对照平均
    枯斑数
    Local lesions of
    control
    P
    P value
    抑制率
    Inhibition
    rate/%
    118.33±5.5124.00±7.550.3523.42±1.63 g
    216.33±8.0224.67±12.010.3734.25±4.71 cd
    312.33±4.0414.33±5.030.6213.41±2.34 h
    413.33±4.0421.00±7.210.1835.65±4.35 bc
    517.67±6.5123.00±7.550.4123.89±3.47 g
    614.33±7.0922.00±12.120.4033.14±5.19 cd
    719.67±4.0429.00±5.570.0732.30±0.96 de
    822.00±7.0029.33±9.870.3524.56±2.16 fg
    912.67±7.3717.67±10.020.5228.72±1.21 ef
    1014.67±6.5124.33±11.060.2639.77±4.36 b
    1115.67±7.0225.00±11.530.3037.02±1.14 bc
    1227.33±14.7431.00±15.870.7812.66±2.85 h
    1320.33±5.0331.00±9.170.1633.80±5.78 cd
    1412.33±4.1619.00±4.580.1436.02±5.96 bc
    1511.33±5.6915.67±6.660.4429.69±8.90 de
    1611.00±3.0015.00±4.000.2426.75±0.48 ef
    1713.00±6.0018.33±9.500.4627.38±4.97 ef
    宁南霉素
    (Ningnanmycin)
    3.67±1.738.33±3.790.0255.19±1.30 a
    数据为3次重复取平均值;化合物质量浓度为50 μg·mL−1;不同字母表示在5%水平显著,下同。
    Data are averages of triplicate; mass concentration at 50 μg·mL−1; data with different letters indicate significance at 5% level.Same for below.
    下载: 导出CSV

    表  2  化合物1~17对TMV的治疗作用

    Table  2.   Anti-TMV effects of 17 compounds on infected tissue

    化合物
    Compound
    处理平均
    枯斑数
    Local lesions of
    treatment
    对照平均
    枯斑数
    Local lesions of
    control


    抑制率
    Inhibition
    rate/%
    117.33±4.7322.67±5.8623.74±1.41 f
    216.67±8.3331.00±15.1346.45±0.81 b
    316.00±6.8322.25±10.4027.06±3.33 f
    413.33±6.8117.67±8.3325.39±2.76 f
    513.33±4.0417.67±5.1324.68±1.82 f
    617.67±6.5124.00±8.5426.56±1.50 f
    723.33±6.3534.33±10.0231.70±3.56 ef
    819.00±3.0026.67±5.0328.48±2.40 f
    914.00±6.5621.33±10.0734.24±0.84 de
    1026.33±4.5141.67±8.6236.50±2.35 d
    1118.67±3.7933.33±7.5743.81±1.26 c
    1216.50±5.2631.50±10.4147.11±4.21 b
    1323.00±4.0028.67±5.6919.50±4.18 g
    1414.33±8.0219.00±11.0024.24±2.88 f
    1526.00±7.5536.33±10.5028.38±1.92 f
    1612.67± 5.5115.33±6.6617.41±0.76 g
    1710.33± 4.1614.00±6.2525.26±3.18 f
    宁南霉素
    (ningnanmycin)
    16.00± 2.0034.33±6.5153.01±3.05 a
    下载: 导出CSV

    表  3  化合物1-17对TMV的钝化作用

    Table  3.   TMV inactivation effects of 17 compounds

    化合物
    Compound
    处理平均
    枯斑数
    Local lesions of
    treatment
    对照平均
    枯斑数
    Local lesions of
    control
    P
    P
    value
    抑制率
    Inhibition
    rate/%
    112.33±3.5127.67±6.430.0255.72±4.61 b
    221.33±3.7929.00±6.080.1326.04±2.9 ef
    314.67±3.5122.00±7.000.1832.14±5.64 de
    49.33±4.5115.00±7.550.3237.45±1.71 cd
    513.67±7.5120.67±12.010.4433.23±3.18 de
    610.33±3.5128.33±7.510.0264.02±2.79 a
    722.00±6.2540.33±9.290.0445.86±3.64 c
    822.33±5.6953.00±13.530.0257.87±2.01 ab
    919.00±2.0030.00±4.360.0236.33±4.31 cd
    1024.67±8.3342.00±10.820.0942.03±4.42 c
    1114.67±3.2126.33±5.510.0344.39±0.92 c
    1226.33±10.0240.00±16.520.2833.65±3.05 de
    139.00±1.0026.00±3.610.00165.18±3.79 a
    1416.33±3.2145.33±6.810.00263.40±9.21 ab
    1525.67±1.5331.67±3.060.0318.74±3.61 f
    1627.00±8.1943.67±15.040.1637.55±3.32 cd
    1720.00±3.6130.67±5.510.0434.77±2.47 cd
    宁南霉素
    (ningnanmycin)
    5.67±1.5315.00±1.530.0761.72±1.98 ab
    下载: 导出CSV
  • [1] 叶健. 农作物病毒病害绿色防控技术创新 [J]. 科技促进发展, 2019(4):362−368.

    YE J. Innovation of green prevention and control technology for crop virus diseases [J]. Science& Technology for Development, 2019(4): 362−368.(in Chinese)
    [2] 耿召良, 商胜华, 陈兴江, 等. 植物源抗烟草花叶病毒天然产物研究进展 [J]. 中国烟草科学, 2011, 32(1):84−91. doi: 10.3969/j.issn.1007-5119.2011.01.019

    GENG Z L, SHANG S H, CHEN X J, et al. Advance in natural products from plants with anti-TMV activity [J]. Chinese Tobacco Science, 2011, 32(1): 84−91.(in Chinese) doi: 10.3969/j.issn.1007-5119.2011.01.019
    [3] TAN Q W, NI J C, SHI J T, et al. Two novel quassinoid glycosides with antiviral activity from the Samara of Ailanthus altissima [J]. Molecules (Basel, Switzerland), 2020, 25(23): 5679. doi: 10.3390/molecules25235679
    [4] 晏英, 陈洁, 唐攀, 等. 复叶地黄连化学成分及其抗烟草花叶病毒活性研究 [J]. 中草药, 2021, 52(12):3493−3500. doi: 10.7501/j.issn.0253-2670.2021.12.004

    YAN Y, CHEN J, TANG P, et al. Chemical constituents from Munronia henryi and their anti-TMV activity [J]. Chinese Traditional and Herbal Drugs, 2021, 52(12): 3493−3500.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.12.004
    [5] CHEN L W, LIU Y X, SONG H J, et al. Expanding indole diversity: Direct 1-step synthesis of 1, 2-fused indoles and spiroindolines from 2-halo anilines for fast SAR antiviral elucidation against tobacco mosaic virus (TMV) [J]. Molecular Diversity, 2017, 21(1): 61−68. doi: 10.1007/s11030-016-9697-4
    [6] 李孟芝. 烟草内源性抗烟草花叶病毒(TMV)活性成分研究[D]. 武汉: 湖北中医药大学, 2017.

    LI M Z. Study on the Anti-TMV Active Componets of Endogenous Tobacco Speciality: Chinese Traditional Pharmacy[D]. Wuhan: Hubei University of Chinese Medicine, 2017. (in Chinese)
    [7] NI J C, SHI J T, TAN Q W, et al. Two new compounds from the fruit of Ailanthus altissima [J]. Natural Product Research, 2019, 33(1): 101−107. doi: 10.1080/14786419.2018.1437434
    [8] 张蔓蔓, 郑聪慧, 刘春鹏, 等. 臭椿的研究进展与展望 [J]. 河北林业科技, 2021(2):49−53. doi: 10.16449/j.cnki.issn1002-3356.2021.02.011

    ZHANG M M, ZHENG C H, LIU C P, et al. Progress and prospect of the research on Ailanthus altissima [J]. The Journal of Hebei Forestry Science and Technology, 2021(2): 49−53.(in Chinese) doi: 10.16449/j.cnki.issn1002-3356.2021.02.011
    [9] 沈建国, 张正坤, 吴祖建, 等. 臭椿抗烟草花叶病毒活性物质的提取及其初步分离 [J]. 中国生物防治, 2007(4):348−352.

    SHEN J G, ZHANG Z K, WU Z J, et al. Extraction and preliminary isolation of antiviral substances from Ailanthus altissima against TMV [J]. Chinese Journal of Biological Control, 2007(4): 348−352.(in Chinese)
    [10] 谭庆伟. 臭椿抗烟草花叶病毒活性物质的分离与结构鉴定[D]. 福州: 福建农林大学, 2007.

    TAN Q W. Isolation and structure elucidation of anti-viral constitutents aganist TMV from Ailanthus altissima[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. (in Chinese)
    [11] TAN Q W, NI J C, ZHENG L P, et al. Anti-tobacco mosaic virus quassinoids from Ailanthus altissima (Mill. ) Swingle [J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7347−7357. doi: 10.1021/acs.jafc.8b01280
    [12] 倪建成. 臭椿果实化学成分及其抗TMV活性[D]. 福州: 福建农林大学, 2018.

    NI J C. Chemicai components from the fruit of Ailanthus altissima(Mill. ) Swingle and their anti-TMV activity[D]. Fuzhou: Fujian Agricultural University, 2018. (in Chinese)
    [13] 邹正彪, 祁进康, 王德艳, 等. 臭椿种子乙酸乙酯提取物抗烟草花叶病毒活性研究 [J]. 重庆师范大学学报(自然科学版), 2018, 35(5):115−119,F0002.

    ZOU Z B, QI J K, WANG D Y, et al. Study on anti-TMV activity of ethyl acetate extracts from seed of Ailanthus altissima [J]. Journal of Chongqing Normal University (Natural Science), 2018, 35(5): 115−119,F0002.(in Chinese)
    [14] GOODING G V, HEBERT T. A simple technique for purification of tobacco mosaic virus in large quantities [J]. Phytopathology, 1967, 57(11): 1285−1290.
    [15] 左安建, 宗同铠, 谭亚婷, 等. 27种植物提取物抗烟草花叶病毒活性分析 [J]. 西南林业大学学报, 2020, 40(5):93−99.

    ZUO A J, ZONG T K, TAN Y T, et al. Study on anti-tobacco mosaic virus activity of 27 plant extracts [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(5): 93−99.(in Chinese)
    [16] 张嫩玲, 叶道坤, 田璧榕, 等. 天胡荽的化学成分研究 [J]. 贵州医科大学学报, 2017, 42(10):1145−1148.

    ZHANG N L, YE D K, TIAN B R, et al. Chemical constituents of Hydrocotyle sibthorpioides [J]. Journal of Guizhou Medical University, 2017, 42(10): 1145−1148.(in Chinese)
    [17] VAN KIEM P, VAN MINH C, NHIEM N X, et al. Inhibitory effect on TNF-α-induced IL-8 secretion in HT-29 cell line by glyceroglycolipids from the leaves of Ficus microcarpa [J]. Archives of Pharmacal Research, 2012, 35(12): 2135−2142. doi: 10.1007/s12272-012-1210-8
    [18] 叶凤梅, 谢阳国, 朱燕, 等. 贡山八角枝叶化学成分研究(英文) [J]. 天然产物研究与开发, 2015, 27(4):604−608,625. doi: 10.16333/j.1001-6880.2015.04.009

    YE F M, XIE Y G, ZHU Y, et al. Chemical constituents of branches and leaves of Illicium wardii A. C. Smith [J]. Natural Product Research and Development, 2015, 27(4): 604−608,625.(in Chinese) doi: 10.16333/j.1001-6880.2015.04.009
    [19] HAMBERG M. Metabolism of 6, 9, 12-octadecatrienoic acid in the red Alga Lithothamnion corallioides: Mechanism of formation of a conjugated tetraene fatty acid [J]. Biochemical and Biophysical Research Communications, 1992, 188(3): 1220−1227. doi: 10.1016/0006-291X(92)91361-S
    [20] POEHLAND B L, CARTÉ B K, FRANCIS T A, et al. In vitro antiviral activity of dammar resin triterpenoids [J]. Journal of Natural Products, 1987, 50(4): 706−713. doi: 10.1021/np50052a022
    [21] KIM K H, MOON E, KIM S Y, et al. Lignans from the Tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic activity [J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4779−4785. doi: 10.1021/jf100323q
    [22] 黄圣卓, 王琪, 刘玉清, 等. 橙黄瑞香中苯丙素类成分研究 [J]. 中草药, 2016, 47(22):3970−3974.

    HUANG S Z, WANG Q, LIU Y Q, et al. Phenylpropanoids from Daphne aurantiaca [J]. Acupuncture Research, 2016, 47(22): 3970−3974.(in Chinese)
    [23] MORIKAWA T, TAO J, UEDA K, et al. Medicinal foodstuffs. XXXI. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense [J]. Chemical & Pharmaceutical Bulletin, 2003, 51(1): 62−67.
    [24] YOSHINARI K, SHIMAZAKI N, SASHIDA Y, et al. Flavanone xyloside and lignans from Prunus jamasakura bark [J]. Phytochemistry, 1990, 29(5): 1675−1678. doi: 10.1016/0031-9422(90)80144-6
    [25] ACHANTA P S, GATTU R K, BELVOTAGI A R V, et al. New malabaricane triterpenes from the oleoresin of Ailanthus malabarica [J]. Fitoterapia, 2015, 100: 166−173. doi: 10.1016/j.fitote.2014.11.022
    [26] GUO J H, WANG W M, LIU J F, et al. Five New Compounds from Arenga pinnata (Wurmb. ) Merr. Fruits [J]. Heterocycles, 2021, 102(12): 2331. doi: 10.3987/COM-21-14531
    [27] YEN C T, HSIEH P W, HWANG T L, et al. Flavonol glycosides from Muehlenbeckia platyclada and their anti-inflammatory activity [J]. Chemical & Pharmaceutical Bulletin, 2009, 57(3): 280−282.
    [28] 潘红玫, 陈斌, 李甫, 等. 迭鞘石斛的化学成分(Ⅱ) [J]. 应用与环境生物学报, 2013, 19(6):952−955. doi: 10.3724/SP.J.1145.2013.00952

    PAN H M, CHEN B, LI F, et al. Chemical Constituents from the Stems of Chemical Constituents from the Stems of Dendrobium denneanum Dendrobium denneanum(Ⅱ) [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(6): 952−955.(in Chinese) doi: 10.3724/SP.J.1145.2013.00952
    [29] 贾栩超, 杨丹, 谢海辉. 甜杨桃鲜果的化学成分研究 [J]. 热带亚热带植物学报, 2017, 25(3):309−314.

    JIA X C, YANG D, XIE H H. Chemical constituents from fresh sweet star fruit [J]. Journal of Tropical and Subtropical Botany, 2017, 25(3): 309−314.(in Chinese)
    [30] AHMED F, SADHU S K, ISHIBASHI M. Search for bioactive natural products from medicinal plants of Bangladesh [J]. Journal of Natural Medicines, 2010, 64(4): 393−401. doi: 10.1007/s11418-010-0424-7
    [31] ZHANG Y J, DEWITT D L, MURUGESAN S, et al. Novel lipid-peroxidation- and cyclooxygenase-inhibitory tannins from Picrorhiza kurroa seeds [J]. Chemistry & Biodiversity, 2004, 1(3): 426−441.
    [32] 赵慧琳. 瑞香狼毒根抗烟草花叶病毒(TMV)活性研究及作用机理初探[D]. 太谷: 山西农业大学, 2017.

    ZHAO H L. Study on anti-TMV activity and the action mechanism of stellera chamejasme L. Root[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese)
    [33] 林中正. 植物源抗烟草花叶病毒活性物质的筛选和作用机理初探[D]. 长沙: 湖南农业大学, 2012.

    LIN Z Z. Study on screening and acting mechanism of anti-tobacco mosaic virus botanical extract[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese)
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  125
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-02-25
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回