• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
YUAN C, ZHANG P P, PANG W B, et al. Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests [J]. Fujian Journal of Agricultural Sciences,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014
Citation: YUAN C, ZHANG P P, PANG W B, et al. Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests [J]. Fujian Journal of Agricultural Sciences,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014

Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests

doi: 10.19303/j.issn.1008-0384.2023.03.014
  • Received Date: 2022-08-20
  • Rev Recd Date: 2022-12-12
  • Available Online: 2023-03-28
  • Publish Date: 2023-03-28
  •   Objective  Composition and diversity of the ectomycorrhizal (ECM) fungi communities at natural and cultivated Castanea henryi forests in Taining, Fujian were studied.   Methods  Samples of C. henryi root and rhizosphere soil at the sites were collected for physiochemical analysis, mycorrhizal morphology observation, and molecular identification. A correlation between the ECM fungi in the roots and environmental conditions was analyzed.   Results   The physicochemical properties of the rhizosphere soil significantly differed between the natural forests and the plantations. The contents of organic matters, total nitrogen, total potassium, and water in the soil of a natural forest were significantly higher than those of a plantation. Five types of ECM fungi belonging to 2 phyla, 3 families, and 5 genera were identified in the collected samples. Among the fungi, the highest infection rate of Cenococcum geophilum at 33.62% was found on the C. henryi roots at the natural forests and that of Scleroderma citrinum at 65.61% at the plantations; while the other dominants included Lactarius kesiyae, Xerocomus sp. and Russula sp. . The contents of total phosphorus, total potassium, and water as well as pH in the soil significantly correlated with the fungal infection on the C. henryi roots.   Conclusion   Significant differences existed in the ECM fungi communities at the natural C. henryi forests and plantations in Taining. The fungal diversity in rhizosphere soil was higher at the natural forests than the plantations. The information gathered from this study provided a guideline for improved C. henryi cultivation management and plantation soil restoration.
  • loading
  • [1]
    GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18(11): 649−660. doi: 10.1038/s41579-020-0402-3
    [2]
    王家源, 殷小琳, 任悦, 等. 毛乌素沙地樟子松外生菌根真菌多样性特征 [J]. 微生物学通报, 2020, 47(11):3856−3867. doi: 10.13344/j.microbiol.china.200365

    WANG J Y, YIN X L, REN Y, et al. Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land [J]. Microbiology China, 2020, 47(11): 3856−3867.(in Chinese) doi: 10.13344/j.microbiol.china.200365
    [3]
    SCHÜTZ L, SAHARAN K, MÄDER P, et al. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms [J]. Applied Soil Ecology, 2022, 169: 104156. doi: 10.1016/j.apsoil.2021.104156
    [4]
    BOUSKOUT M, BOURHIA M, AL FEDDY M N, et al. Mycorrhizal fungi inoculation improves Capparis spinosa’s yield, nutrient uptake and photosynthetic efficiency under water deficit [J]. Agronomy, 2022, 12(1): 149. doi: 10.3390/agronomy12010149
    [5]
    WANG T, PERSSON P, TUNLID A. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins [J]. Environmental Microbiology, 2021, 23(10): 5837−5849. doi: 10.1111/1462-2920.15539
    [6]
    BINGHAM M A, SIMARD S W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? [J]. Ecology and Evolution, 2011, 1(3): 306−316. doi: 10.1002/ece3.24
    [7]
    BINGHAM M A, SIMARD S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought [J]. Ecosystems, 2012, 15(2): 188−199. doi: 10.1007/s10021-011-9502-2
    [8]
    MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses [J]. Nature Reviews Microbiology, 2016, 14(12): 760−773. doi: 10.1038/nrmicro.2016.149
    [9]
    杨国亭, 宋关玲, 高兴喜. 外生菌根在森林生态系统中的重要性(Ⅰ): 外生菌根对宿主树木的影响 [J]. 东北林业大学学报, 1999, 27(6):72−77. doi: 10.3969/j.issn.1000-5382.1999.06.018

    YANG G T, SONG G L, GAO X X. The significance of ectomycorrhizas in forest ecosystems: The influence of ectomycorrhizas on host trees [J]. Journal of Northeast Forestry University, 1999, 27(6): 72−77.(in Chinese) doi: 10.3969/j.issn.1000-5382.1999.06.018
    [10]
    郑诚乐, 江由. 闽北锥栗品种资源及其利用前景 [J]. 福建农业大学学报, 1998, 27(3):291−295.

    ZHENG C L, JIANG Y. Cultivar resources of chinquapin in North Fujian and their utilization prospects [J]. Journal of Fujian Agricultural University (Natural Science), 1998, 27(3): 291−295.(in Chinese)
    [11]
    李成伟. 锥栗林地水土流失原因及治理技术 [J]. 福建农业科技, 2012(8):47−48. doi: 10.3969/j.issn.0253-2301.2012.08.028

    LI C W. Study on the cause of soil erosion and technical measures of in plating area of Castanea henryi [J]. Fujian Agricultural Science and Technology, 2012(8): 47−48.(in Chinese) doi: 10.3969/j.issn.0253-2301.2012.08.028
    [12]
    邹显花, 黄彬彬, 高清贵, 等. 闽北锥栗林经营过程中的水土流失防治效果研究 [J]. 水土保持学报, 2016, 30(6):47−55. doi: 10.13870/j.cnki.stbcxb.2016.06.009

    ZOU X H, HUANG B B, GAO Q G, et al. The control effect of soil erosion in Castanea henryi plantation in the north of Fujian Province [J]. Journal of Soil and Water Conservation, 2016, 30(6): 47−55.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2016.06.009
    [13]
    高清贵. 福建省建瓯市锥栗山水土流失防治措施及其效益初探 [J]. 亚热带水土保持, 2016, 28(1):37−39. doi: 10.3969/j.issn.1002-2651.2016.01.012

    GAO Q G. Preliminary study on soil erosion control measures and their benefits in Zhuili Mountain, Jian 'ou City, Fujian Province [J]. Subtropical Soil and Water Conservation, 2016, 28(1): 37−39.(in Chinese) doi: 10.3969/j.issn.1002-2651.2016.01.012
    [14]
    王倩, 李振双, 杨富成, 等. 外生菌根共生对林木氮素吸收的促进作用 [J]. 世界林业研究, 2021, 34(3):19−24. doi: 10.13348/j.cnki.sjlyyj.2020.0133.y

    WANG Q, LI Z S, YANG F C, et al. Nitrogen uptake promoting mechanism of trees in ectomycorrhizal symbioses [J]. World Forestry Research, 2021, 34(3): 19−24.(in Chinese) doi: 10.13348/j.cnki.sjlyyj.2020.0133.y
    [15]
    熊欢. 锥栗外生菌根效应及共生机制研究[D]. 长沙: 中南林业科技大学, 2019.

    XIONG H. Study on ectomycorrhizal effectand symbiosis mechanism of Castanea henryi[D]. Changsha: Central South University of Forestry & Technology, 2019. (in Chinese)
    [16]
    高程, 郭良栋. 外生菌根真菌多样性的分布格局与维持机制研究进展 [J]. 生物多样性, 2013, 21(4):488−498.

    GAO C, GUO L D. Distribution pattern and maintenance of ectomycorrhizal fungus diversity [J]. Biodiversity Science, 2013, 21(4): 488−498.(in Chinese)
    [17]
    郭米山, 高广磊, 丁国栋, 等. 呼伦贝尔沙地樟子松外生菌根真菌多样性 [J]. 菌物学报, 2018, 37(9):1133−1142. doi: 10.13346/j.mycosystema.180114

    GUO M S, GAO G L, DING G D, et al. Diversity of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in Hulunbuir Sandy Land [J]. Mycosystema, 2018, 37(9): 1133−1142.(in Chinese) doi: 10.13346/j.mycosystema.180114
    [18]
    陈世平. 福建·泰宁锥栗销售顺畅 [J]. 中国果业信息, 2014, 31(11):64.

    CHEN S P. Fujian Taining Castanea henryi sells smoothly [J]. China Fruit News, 2014, 31(11): 64.(in Chinese)
    [19]
    胡慧蓉, 田昆. 土壤学实验指导教程[M]. 北京: 中国林业出版社, 2012.

    HU H R, TIAN K. Guide course of soil science experiment[M]. Beijing: China Forestry Publishing House, 2012. (in Chinese)
    [20]
    耿荣, 耿增超, 黄建, 等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性 [J]. 菌物学报, 2016, 35(7):833−847. doi: 10.13346/j.mycosystema.150122

    GENG R, GENG Z C, HUANG J, et al. Diversity of ectomycorrhizal fungi associated with Quercus aliena in Xinjiashan forest region of Qinling Mountains [J]. Mycosystema, 2016, 35(7): 833−847.(in Chinese) doi: 10.13346/j.mycosystema.150122
    [21]
    KENNEDY P G, HILL L T. A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages [J]. Fungal Ecology, 2010, 3(3): 195−204. doi: 10.1016/j.funeco.2009.08.005
    [22]
    方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范 [J]. 生物多样性, 2009, 17(6):533−548. doi: 10.3724/SP.J.1003.2009.09253

    FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory [J]. Biodiversity Science, 2009, 17(6): 533−548.(in Chinese) doi: 10.3724/SP.J.1003.2009.09253
    [23]
    王琴. 蒙古栎外生菌根真菌多样性研究 [J]. 辽宁林业科技, 2013(3):6−9,14. doi: 10.3969/j.issn.1001-1714.2013.03.003

    WANG Q. Ectomycorrhizal community composition of Quercus mongolica [J]. Liaoning Forestry Science and Technology, 2013(3): 6−9,14.(in Chinese) doi: 10.3969/j.issn.1001-1714.2013.03.003
    [24]
    TN A, AH A, MK A, et al. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan[J]. Forest Ecology and Management, 2006, 236(2–3): 278-285.
    [25]
    陈伟楠, 曹磊, 冷平生, 等. 北京地区槲树外生菌根真菌群落特征 [J]. 森林与环境学报, 2021, 41(6):629−636.

    CHEN W N, CAO L, LENG P S, et al. Community composition of ectomycorrhizal fungi associated with Quercus dentata in Beijing, China [J]. Journal of Forest and Environment, 2021, 41(6): 629−636.(in Chinese)
    [26]
    乌仁陶格斯, 韩胜利, 闫伟. 浅析土生空团菌自然侵染率与植被、根际土壤因子的关系 [J]. 中国农学通报, 2012, 28(25):47−51. doi: 10.3969/j.issn.1000-6850.2012.25.009

    WURENTAOGESI, HAN S L, YAN W. The relationship between natural infection rate of Cenococcum geophilum and vegetation, rhizosphere soil factors [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 47−51.(in Chinese) doi: 10.3969/j.issn.1000-6850.2012.25.009
    [27]
    乌仁陶格斯. 内蒙古典型森林类型土生空团菌生态分布的研究[D]. 呼和浩特: 内蒙古农业大学, 2010

    WURENTAOGESI. Ecological distribution of Cenococcum geophilum in typical forest in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
    [28]
    刘冬明. 锥栗优势共生菌根真菌筛选[D]. 长沙: 中南林业科技大学, 2016.

    LIU D M. The advantages of Castanea henryi symbiotic fungi screening[D]. Changsha: Central South University of Forestry & Technology, 2016. (in Chinese)
    [29]
    何绍昌. 贵州林木外生菌根菌种类及生态、分布的初步研究 [J]. 贵州科学, 1991, 9(1):51−58.

    HE S C. A preliminary study on the resources of forest ectotrophic fungi and their ecological distribution from Guizhou Province, China [J]. Guizhou Science, 1991, 9(1): 51−58.(in Chinese)
    [30]
    谭方河, 王云璋. 四川松树、桉树外生菌根菌种类调查 [J]. 四川林业科技, 2000, 21(3):65−69. doi: 10.16779/j.cnki.1003-5508.2000.03.023

    TAN F H, WANG Y Z. Investigation on ectomycorrhizal fungi species of pine and eucalyptus in Sichuan [J]. Journal of Sichuan Forestry Science and Technology, 2000, 21(3): 65−69.(in Chinese) doi: 10.16779/j.cnki.1003-5508.2000.03.023
    [31]
    贺小香, 谭周进, 肖启明, 等. 外生菌根的功能及与环境因子的关系 [J]. 中国生态农业学报, 2007, 15(2):201−204.

    HE X X, TAN Z J, XIAO Q M, et al. A review on the function of ectomycorrhiza and the effects of environmental factors on them [J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 201−204.(in Chinese)
    [32]
    龚珊珊, 廖善刚. 桉树人工林与天然林土壤养分的对比研究 [J]. 江苏林业科技, 2009, 36(3):1−4. doi: 10.3969/j.issn.1001-7380.2009.03.001

    GONG S S, LIAO S G. Soil nutrient characteristics in eucalypt plantation and natural forest [J]. Journal of Jiangsu Forestry Science & Technology, 2009, 36(3): 1−4.(in Chinese) doi: 10.3969/j.issn.1001-7380.2009.03.001
    [33]
    祁雪连, 葛晓敏, 钱壮壮, 等. 武夷山天然针阔混交林与毛竹人工林土壤性质差异 [J]. 生态环境学报, 2021, 30(8):1599−1606. doi: 10.16258/j.cnki.1674-5906.2021.08.006

    QI X L, GE X M, QIAN Z Z, et al. Differences of soil properties between natural mixed coniferous and broad-leaved forest and moso bamboo plantation in Wuyi Mountains [J]. Ecology and Environmental Sciences, 2021, 30(8): 1599−1606.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2021.08.006
    [34]
    SATAPUTE P, KAMBLE M V, ADHIKARI S S, et al. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2334-2344.
    [35]
    刘建明, 温爱亭, 姚颖, 等. 榛子天然林、榛子人工林及农田土壤理化性质分析研究 [J]. 森林工程, 2019, 35(6):26−30. doi: 10.3969/j.issn.1006-8023.2019.06.004

    LIU J M, WEN A T, YAO Y, et al. Research on Soil Physical and Chemical Properties in Farmland, Natural Corylus Forest and Plantation Forest [J]. Forest Engineering, 2019, 35(6): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-8023.2019.06.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (348) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return