• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TrnL-F与ISSR的凹脉金花茶与3种近缘种的分子鉴别及其遗传多样性

陈莹 曾菁菁 吕祉龙 仇明月 郭蓓琳 姚丽敏 闫淑君

陈莹,曾菁菁,吕祉龙,等. 基于TrnL-F与ISSR的凹脉金花茶与3种近缘种的分子鉴别及其遗传多样性 [J]. 福建农业学报,2022,37(10):1298−1304 doi: 10.19303/j.issn.1008-0384.2022.010.008
引用本文: 陈莹,曾菁菁,吕祉龙,等. 基于TrnL-F与ISSR的凹脉金花茶与3种近缘种的分子鉴别及其遗传多样性 [J]. 福建农业学报,2022,37(10):1298−1304 doi: 10.19303/j.issn.1008-0384.2022.010.008
CHEN Y, ZENG J J, LV Z L, et al. TrnL-F and ISSR Primer-based Molecular Identification and Genetic Diversity Determination on Camellia impressinervis and Three Closely Related Species [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1298−1304 doi: 10.19303/j.issn.1008-0384.2022.010.008
Citation: CHEN Y, ZENG J J, LV Z L, et al. TrnL-F and ISSR Primer-based Molecular Identification and Genetic Diversity Determination on Camellia impressinervis and Three Closely Related Species [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1298−1304 doi: 10.19303/j.issn.1008-0384.2022.010.008

基于TrnL-F与ISSR的凹脉金花茶与3种近缘种的分子鉴别及其遗传多样性

doi: 10.19303/j.issn.1008-0384.2022.010.008
基金项目: 福建省自然科学基金项目(2021J01132);福建农林大学学科专业建设项目(YSYL-bdpy-4);福建农林大学科技创新专项基金(CXZX2020052A);福建农林大学创新训练项目(202110389165)
详细信息
    作者简介:

    陈莹(1981−),女,博士,副教授,主要从事观赏药用植物和园林生态相关研究(E-mail:25220528@qq.com)

    通讯作者:

    闫淑君(1975−),女,博士,教授,主要从事城市植被生态相关研究(E-mail:fjyansj@tom.com

  • 中图分类号: S 682.39

TrnL-F and ISSR Primer-based Molecular Identification and Genetic Diversity Determination on Camellia impressinervis and Three Closely Related Species

  • 摘要:   目的  凹脉金花茶是一种具有较高价值的观赏与药用两用植物,与其同属中的金花茶、显脉金花茶、东兴金花茶外形相似。通过分子指纹技术分析这4个近源种之间的遗传多样性,可为凹脉金花茶的鉴定及其种质资源保护和利用提供理论指导。  方法  利用金花茶、凹脉金花茶、显脉金花茶、东兴金花茶的19个样品评估TrnL-F条形码在这4种山茶中鉴定凹脉金花茶的潜力,并利用简单序列间重复(ISSR)引物检测4个山茶组种的遗传多样性。  结果  基于TrnL-F序列构建的进化树与检测到的单核苷酸多态性位点的差异相一致,所有凹脉金花茶样品单独聚为一类。ISSR分析显示,4个凹脉金花茶植物样本单独聚为一类,与其他3个山茶组物种的相似指数为0.57。  结论  TrnL-F可有效鉴别凹脉金花茶与3种近缘种。本研究揭示了这4个近缘种的分子亲缘关系,从分子水平证实显凹脉金花茶具有异于其他3种山茶的遗传特性。
  • 图  1  TrnL-F系列代表性位点

    Figure  1.  Representative loci of trnL-F series

    图  2  不同金花茶TrnL-F序列的系统发育树

    Figure  2.  Phylogenetic tree of C. sinensis trnL-F sequences

    图  3  引物UBC846聚合酶链反应扩增

    M:Marker;1、8;9、10、12、14为金花茶;2、6;11、18为显脉金花茶,3、4、7、15为凹脉金花茶,5、13、16、17、19为东兴金花茶。

    Figure  3.  PCR amplification with primer UBC846

    M: Marker; 1,8,9,10,12,14 are C . nitidissima; 2, 6, 11,18 are C.euphlebia; 3,4,7,15 are C. impressinervis; 5,13,16,17,19 are C.tunghinensis.

    图  4  4种金花茶种质资源的分类鉴定及亲缘关系

    Figure  4.  Classification, identification, and genetic relationship of 4 camellia germplasms

    表  1  ISSR扩增引物

    Table  1.   Amplified ISSR primers

    引物
    Primer
    引物序列(3′-5′)
    Primer sequence(3′-5′)
    退火温度
    Annealing
    temperature/℃
    UBC811GAGAGAGAGAGAGAGAC51.2
    UBC815CTCTCTCTCTCTCTCTG50.5
    UBC825ACACACACACACACACT50.5
    UBC834AGAGAGAGAGAGAGAGYT49
    UBC835AGAGAGAGAGAGAGAGYC56
    UBC836AGAGAGAGAGAGAGAGYA52
    UBC840GAGAGAGAGAGAGAGAYT49
    UBC841GAGAGAGAGAGAGAGAYC52
    UBC844CTCTCTCTCTCTCTCTRC52
    UBC845CTCTCTCTCTCTCTCTRG50.5
    UBC846CACACACACACACACART51.2
    UBC848CACACACACACACACARG55
    UBC851GTGTGTGTGTGTGTGTYG52
    UBC856ACACACACACACACACYA52
    下载: 导出CSV

    表  2  ISSR引物扩增产物的多态性

    Table  2.   Polymorphisms of ISSR primers amplified products

    引物
    Primer
    扩增条带总数
    Total number of amplified bands/条
    多态性条带数
    Polymorphic strips/条
    多态性条带占比
    Percentage of polymorphic bands/%
    UBC8112020100.0
    UBC8151212100.0
    UBC825181688.9
    UBC8341313100.0
    UBC8351515100.0
    UBC836161381.3
    UBC8401212100.0
    UBC841121083.3
    UBC8441515100.0
    UBC8451212100.0
    UBC8461616100.0
    UBC84833100.0
    UBC8519888.9
    UBC8569888.9
    总数
    Total
    18217395.1
    下载: 导出CSV
  • [1] 王欣晨, 李文兰, 阎新佳, 等. 金花茶化学成分及药理活性研究 [J]. 哈尔滨商业大学学报(自然科学版), 2018, 34(5):522−527,563.

    WANG X C, LI W L, YAN X J, et al. Research on chemical constituents and pharmacological activities of flowers from Camellia chrysantha (Hu) Tuyama [J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2018, 34(5): 522−527,563.(in Chinese)
    [2] 陈月圆, 黄永林, 文永新. 金花茶植物化学成分和药理作用研究进展 [J]. 广西热带农业, 2009(1):14−16.

    CHEN Y Y, HUANG Y L, WEN Y X. Advance in study on chemical constituents and pharmacological action of Camellia chrysantha [J]. Guangxi Tropical Agriculture, 2009(1): 14−16.(in Chinese)
    [3] 宁恩创, 秦小明, 杨宏. 金花茶叶水提物的降脂功能试验研究 [J]. 广西大学学报(自然科学版), 2004, 29(4):350−352.

    NING E C, QIN X M, YANG H. The experimental study on regulating serum lipid of water soluble extractive from the leave of Camellia chrysantha (Hu) Tuyama [J]. Journal of Guangxi University (Natural Science Edition), 2004, 29(4): 350−352.(in Chinese)
    [4] 王永奇, 彭晓, 唐前, 等. 金花茶组植物抗IgE介导Ⅰ型过敏反应的活性筛选 [J]. 中南药学, 2009, 7(10):721−724.

    WANG Y Q, PENG X, TANG Q, et al. Active fraction of IgE-mediated type I allergy from section chrysamtha changon [J]. Central South Pharmacy, 2009, 7(10): 721−724.(in Chinese)
    [5] 马硕, 蒲志军, 张小玲, 等. 金花茶多酚对2型糖尿病大鼠胰腺的保护作用 [J]. 中国实验方剂学杂志, 2017, 23(18):89−93.

    MA S, PU Z J, ZHANG X L, et al. Protective effect of Camellia nitidissima polyphenols on pancreas in diabetic rats [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(18): 89−93.(in Chinese)
    [6] 韦霄, 黄兴贤, 蒋运生, 等. 3种金花茶组植物提取物的抗氧化活性比较 [J]. 中国中药杂志, 2011, 36(5):639−641.

    WEI X, HUANG X X, JIANG Y S, et al. Comparison of antioxidant activities of extracts from three Camellia species [J]. China Journal of Chinese Materia Medica, 2011, 36(5): 639−641.(in Chinese)
    [7] 李翠云, 段小娴, 苏建家, 等. 金花茶对二乙基亚硝胺致大鼠肝癌前病变及肝癌细胞株作用的影响 [J]. 广西医科大学学报, 2007, 24(5):660−663. doi: 10.3969/j.issn.1005-930X.2007.05.002

    LI C Y, DUAN X X, SU J J, et al. Impact of leaves and flowers of camellia chrysantha (hu) tuyama of different concentrations on diethylnitrosaminal-induced precancerous lision to liver of rat and hepatoma cells bel-7404 [J]. Journal of Guangxi Medical University, 2007, 24(5): 660−663.(in Chinese) doi: 10.3969/j.issn.1005-930X.2007.05.002
    [8] 张宏达. 华夏植物区系的金花茶组 [J]. 中山大学学报(自然科学版), 1979, 18(3):69−74.

    ZHANG H D. Chrysantha, A section of golden camellias from cathaysian flora [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni(National Science Edition), 1979, 18(3): 69−74.(in Chinese)
    [9] 梁盛业. 世界金花茶植物名录 [J]. 广西林业科学, 2007, 36(4):221−223.

    LIANG S Y. The world list of Camellia [J]. Guangxi Forestry Science, 2007, 36(4): 221−223.(in Chinese)
    [10] 赖彦池. 凹脉金花茶的保护遗传学研究[D]. 桂林: 广西师范大学, 2021.

    LAI Y C. Conservation genetic of Camellia impressinervis[D]. Guilin: Guangxi Normal University, 2021.
    [11] HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes [J]. Proceedings Biological Sciences, 2003, 270(1512): 313−321. doi: 10.1098/rspb.2002.2218
    [12] CHASE M W, SALAMIN N, WILKINSON M, et al. Land plants and DNA barcodes: Short-term and long-term goals [J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1462): 1889−1895. doi: 10.1098/rstb.2005.1720
    [13] PATRICK O, JOHN M, DENNIS O, et al. Molecular footprint of Kenya's gene bank repositories based on the cp-genome signatures [J]. American Journal of Molecular Biology, 2018, 8(4): 215−244. doi: 10.4236/ajmb.2018.84019
    [14] LI J S, YANG M, LI Y N, et al. Chloroplast genomes of two Pueraria DC. species: Sequencing, comparative analysis and molecular marker development [J]. FEBS Open Bio, 2022, 12(2): 349−361. doi: 10.1002/2211-5463.13335
    [15] PARK I, SONG J H, YANG S, et al. Comparative analysis of Actaea chloroplast genomes and molecular marker development for the identification of authentic cimicifugae rhizoma [J]. Plants (Basel, Switzerland), 2020, 9(2): 157.
    [16] ZHANG H, TANG S, SCHNABLE J C, et al. Genome-wide DNA polymorphism analysis and molecular marker development for the Setaria italica variety SSR41 and positional cloning of the Setaria white leaf sheath gene SiWLS1 [J]. Frontiers in Plant Science, 2021, 12: 743782. doi: 10.3389/fpls.2021.743782
    [17] PEI N C, CHEN B F, KRESS W J. Advances of community-level plant DNA barcoding in China [J]. Frontiers in Plant Science, 2017, 8: 225.
    [18] KOCYAN A, SNIJMAN D A, FOREST F, et al. Molecular phylogenetics of Hypoxidaceae - Evidence from plastid DNA data and inferences on morphology and biogeography [J]. Molecular Phylogenetics and Evolution, 2011, 60(1): 122−136. doi: 10.1016/j.ympev.2011.02.021
    [19] 陈春梅, 马春雷, 马建强, 等. 茶树cpDNA测序及基于cpDNA序列的山茶属植物亲缘关系研究 [J]. 茶叶科学, 2014, 34(4):371−380. doi: 10.3969/j.issn.1000-369X.2014.04.010

    CHEN C M, MA C L, MA J Q, et al. Sequencing of chloroplast genome of Camellia sinensis and genetic relationship for Camellia plants based on chloroplast DNA sequences [J]. Journal of Tea Science, 2014, 34(4): 371−380.(in Chinese) doi: 10.3969/j.issn.1000-369X.2014.04.010
    [20] 方伟, 杨俊波, 杨世雄, 等. 基于叶绿体四个DNA片段联合分析探讨山茶属长柄山茶组、金花茶组和超长柄茶组的系统位置与亲缘关系 [J]. 云南植物研究, 2010, 32(1):1−13. doi: 10.3724/SP.J.1143.2010.00001

    FANG W, YANG J B, YANG S X, et al. Phylogeny of Camellia sects. Longipedicellata, chrysantha and longissima(Theaceae) based on sequence data of four chloroplast DNA loci [J]. Acta Botanica Yunnanica, 2010, 32(1): 1−13.(in Chinese) doi: 10.3724/SP.J.1143.2010.00001
    [21] 肖政, 李纪元, 李志辉, 等. 金花茶组物种遗传关系的ISSR分析 [J]. 林业科学研究, 2014, 27(1):71−76.

    XIAO Z, LI J Y, LI Z H, et al. Genetic relationships among species from Camellia sect. chrysantha Chang revealed by ISSR analysis [J]. Forest Research, 2014, 27(1): 71−76.(in Chinese)
    [22] 张玥, 蓝增全, 吴田. 云南大围山金花茶种质资源的ISSR分析 [J]. 分子植物育种, 2018, 16(2):649−655.

    ZHANG Y, LAN Z Q, WU T. ISSR analysis of Camellia nitidissima germplasm resources from dawei mountain in Yunnan [J]. Molecular Plant Breeding, 2018, 16(2): 649−655.(in Chinese)
    [23] 罗在柒, 陆俊, 李荣京, 等. 贵州金花茶种质资源ISSR分析及指纹图谱库构建 [J]. 乡村科技, 2020, 11(22):118−120. doi: 10.3969/j.issn.1674-7909.2020.22.060

    LUO Z Q, LU J, LI R J, et al. ISSR analysis and fingerprint database construction of Camellia chrysantha germplasm resources in Guizhou [J]. Countryside Technology, 2020, 11(22): 118−120.(in Chinese) doi: 10.3969/j.issn.1674-7909.2020.22.060
    [24] 覃小玲, 史艳财, 李承卓, 等. 基于FTIR技术金花茶组植物物种鉴定研究 [J]. 光谱学与光谱分析, 2012, 32(10):2685−2689. doi: 10.3964/j.issn.1000-0593(2012)10-2685-05

    QIN X L, SHI Y C, LI C Z, et al. Study on Camellia sect. chrysantha Chang species identification by FTIR technology [J]. Spectroscopy and Spectral Analysis, 2012, 32(10): 2685−2689.(in Chinese) doi: 10.3964/j.issn.1000-0593(2012)10-2685-05
    [25] 张晓丽, 代红军. 植物RNA提取方法的研究进展 [J]. 北方园艺, 2014(8):175−178.

    ZHANG X L, DAI H J. Research progress on extraction method of plant RNA [J]. Northern Horticulture, 2014(8): 175−178.(in Chinese)
    [26] HEINRICH M, ANAGNOSTOU S. From pharmacognosia to DNA-based medicinal plant authentication - pharmacognosy through the centuries [J]. Planta Medica, 2017, 83(14/15): 1110−1116. doi: 10.1055/s-0043-108999
    [27] 刘红梅, 张存艳, 叶强, 等. 基于DNA条形码技术对喉红石斛的植物学分类研究 [J]. 中草药, 2021, 52(21):6656−6662. doi: 10.7501/j.issn.0253-2670.2021.21.023

    LIU H M, ZHANG C Y, YE Q, et al. Botanical Classification of Dendrobium christyanum based on DNA barcode technology [J]. Chinese Traditional and Herbal Drugs, 2021, 52(21): 6656−6662.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.21.023
    [28] NNEJI L M, ADEOLA A C, AYOOLA A O, et al. DNA barcoding and species delimitation of butterflies (Lepidoptera) from Nigeria [J]. Molecular Biology Reports, 2020, 47(12): 9441−9457. doi: 10.1007/s11033-020-05984-5
    [29] SARAVANAN M, MOHANAPRIYA G, LAHA R, et al. DNA barcoding detects floral origin of Indian honey samples [J]. Genome, 2019, 62(5): 341−348. doi: 10.1139/gen-2018-0058
    [30] DE VERE N, RICH T C G, TRINDER S A, et al. DNA barcoding for plants [J]. Methods in Molecular Biology (Clifton, N J), 2015, 1245: 101−118.
    [31] TAN S L, LUO Y H, HOLLINGSWORTH P M, et al. DNA barcoding herbaceous and woody plant species at a subalpine forest dynamics plot in Southwest China [J]. Ecology and Evolution, 2018, 8(14): 7195−7205. doi: 10.1002/ece3.4254
    [32] GILL B A, MUSILI P M, KURUKURA S, et al. Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna [J]. Molecular Ecology Resources, 2019, 19(4): 838−846. doi: 10.1111/1755-0998.13001
    [33] SUCHER N J, HENNELL J R, CARLES M C. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants[M]//Methods in Molecular Biology. Totowa, NJ: Humana Press, 2012: 13-22.
    [34] VIGLIANTE I, MANNINO G, MAFFEI M E. Chemical characterization and DNA fingerprinting of Griffonia simplicifolia baill [J]. Molecules (Basel, Switzerland), 2019, 24(6): 1032. doi: 10.3390/molecules24061032
    [35] BOBAN S B, MAURYA S, JHA Z. DNA fingerprinting: An overview on genetic diversity studies in the botanical taxa of Indian Bamboo [J]. Genetic Resources and Crop Evolution, 2022, 69(2): 469−498. doi: 10.1007/s10722-021-01280-8
    [36] ARSHAD H, SHADMA W, MOUSTAFA M. Pharmacognostic standardization and DNA fingerprinting of leaves of Datura stramonium, growing naturally in Asir region of Saudi Arabia [J]. Pakistan Journal of Pharmaceutical Sciences, 2020, 33(3): 1155−1161.
    [37] 姚敏. 槭叶铁线莲亚组的遗传多样性和居群动态变化研究[D]. 北京: 北京林业大学, 2021.

    YAO M. Genetic diversity and population dynamics of Clematis subsect. acerifoliae[D]. Beijing: Beijing Forestry University, 2021. (in Chinese)
    [38] 黄蕾, 邢晓成, 张雨曲, 等. 地理因素对箭竹复合体遗传多样性与遗传分化的影响 [J]. 西北植物学报, 2021, 41(5):872−879. doi: 10.7606/j.issn.1000-4025.2021.05.0872

    HUANG L, XING X C, ZHANG Y Q, et al. Effect of geographic factors on the genetic diversity and divergence of Fargesia spathacea complex [J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5): 872−879.(in Chinese) doi: 10.7606/j.issn.1000-4025.2021.05.0872
    [39] 李爽, 刘上丽, 裴思玉, 等. 基于单拷贝核基因PAL研究贵州金花茶遗传多样性 [J]. 广西师范大学学报(自然科学版), 2021, 39(1):128−135.

    LI S, LIU S L, PEI S Y, et al. A study on genetic diversity of Camellia huana by single-copy nuclear gene PAL [J]. Journal of Guangxi Normal University (Natural Science Edition), 2021, 39(1): 128−135.(in Chinese)
    [40] 骆亮, 张文春, 李龙, 等. 不同居群朱砂根(Ardisia crenata)的荧光ISSR遗传多样性分析 [J]. 分子植物育种, 2021, 19(18):6235−6247.

    LUO L, ZHANG W C, LI L, et al. Genetic diversity analysis of Ardisia crenata in different populations by fluorescence ISSR [J]. Molecular Plant Breeding, 2021, 19(18): 6235−6247.(in Chinese)
    [41] 杨卓, 杨晓杰, 付学鹏. 扎龙湿地10个不同居群芦苇的ITS序列分析 [J]. 种子, 2021, 40(11):122−125. doi: 10.16590/j.cnki.1001-4705.2021.11.122

    YANG Z, YANG X J, FU X P. ITS sequence analysis of 10 different populations of Phragmites australis in Zhalong wetland [J]. Seed, 2021, 40(11): 122−125.(in Chinese) doi: 10.16590/j.cnki.1001-4705.2021.11.122
    [42] 马翠苹, 周先容, 尚进, 等. 四川花萼山不同海拔巴山榧树居群的遗传多样性 [J]. 分子植物育种, 2018, 16(19):6517−6524. doi: 10.13271/j.mpb.016.006517

    MA C P, ZHOU X R, SHANG J, et al. Genetic diversity of Torreya fargesii populations at different altitudes in Hua'eshan, Sichuan Province [J]. Molecular Plant Breeding, 2018, 16(19): 6517−6524.(in Chinese) doi: 10.13271/j.mpb.016.006517
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  162
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-07-14
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回