• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

番茄WRKY转录因子比较鉴定及细菌胁迫响应

水德聚 孙继 熊自立 徐焕文 张圣美 史建磊

水德聚,孙继,熊自立,等. 番茄WRKY转录因子比较鉴定及细菌胁迫响应 [J]. 福建农业学报,2023,38(3):281−293 doi: 10.19303/j.issn.1008-0384.2023.03.004
引用本文: 水德聚,孙继,熊自立,等. 番茄WRKY转录因子比较鉴定及细菌胁迫响应 [J]. 福建农业学报,2023,38(3):281−293 doi: 10.19303/j.issn.1008-0384.2023.03.004
SHUI D J, SUN J, XIONG Z L, et al. Identification and Pathogenic Response of Tomato WRKY Transcription Factors [J]. Fujian Journal of Agricultural Sciences,2023,38(3):281−293 doi: 10.19303/j.issn.1008-0384.2023.03.004
Citation: SHUI D J, SUN J, XIONG Z L, et al. Identification and Pathogenic Response of Tomato WRKY Transcription Factors [J]. Fujian Journal of Agricultural Sciences,2023,38(3):281−293 doi: 10.19303/j.issn.1008-0384.2023.03.004

番茄WRKY转录因子比较鉴定及细菌胁迫响应

doi: 10.19303/j.issn.1008-0384.2023.03.004
基金项目: 浙江省农业新品种选育重大科技专项子课题(2021C02065);浙江省农业高质量发展专项(浙种〔 2021〕58号);温州市农业新品种选育协作组项目(2019ZX007)
详细信息
    作者简介:

    水德聚(1984−),男,硕士,主要从事蔬菜栽培与遗传育种研究(E-mail:shuidj163@163.com

    通讯作者:

    史建磊(1982−),男,博士,副教授,主要从事作物遗传育种与生物技术研究(E-mail:sjlhebau@163.com)

  • 中图分类号: S641.2

Identification and Pathogenic Response of Tomato WRKY Transcription Factors

  • 摘要:   目的  深入了解番茄WRKY转录因子的组学特征及其生物胁迫响应。  方法  基于最新公共数据,利用生物信息学和比较基因组学方法对番茄WRKY进行系统鉴定,结合抗、感2个番茄自交系在青枯菌侵染前后的RNA-seq数据,挖掘青枯病抗性相关WRKY。  结果  85个番茄WRKY转录因子被鉴定,可分为I、IIa+b、IIc、IId+e和III等类别,IIe基因最多。其中,9个基因七肽基序发生了单一氨基酸变异,WRKYGKK为优势突变型。这些WRKY主要分布在5号染色体,且具有端部和成簇分布现象,尤其是IIe亚类。45.88%的番茄WRKY具有共线性。58.82%的番茄WRKY(主要是I和IIc类)与拟南芥和辣椒WRKY形成73对直系同源基因,其选择压力(Ka/Ks)均小于1。16个番茄WRKY(主要是IIa+b和IIc类)对几种生物胁迫反应强烈,且主要在根中表达。12个差异表达WRKY(主要是III和IIb类)被鉴定,其中Solyc03g095770.3(III)与Solyc09g014990.4(I)互作在番茄青枯病响应中发挥重要作用。  结论  综合鉴定了番茄WRKY转录因子,筛选到12个青枯病响应基因。
  • 图  1  番茄WRKY转录因子保守序列

    Figure  1.  Conserved sequences of WRKY TFs in tomato

    图  2  番茄WRKY转录因子种内共线性

    Figure  2.  Intraspecific collinearity of WRKY TFs in tomato

    图  3  番茄、辣椒和拟南芥WRKY转录因子系统发生树

    氨基酸多序列比对后,用IQ-Tree基于最大似然法构建系统发生树。红色标注指图位克隆到的首个抗青枯病基因RRS1

    Figure  3.  Phylogenetic trees of WRKY TFs in tomato, chili pepper and Arabidopsis

    IQ-Tree based on maximum likelihood (ML) method after multiple amino acid sequence alignment was used to construct phylogenetic tree. Red indicates 1st bacterial wilt resistance gene RRS1 from map-based cloning.

    图  4  番茄WRKY在不同组织部位(a)和病菌侵染(b)下的相对表达

    a: 栽培番茄Heinz1706,1. 芽,2. 花,3. 叶,4. 根,5~7. 果(1~3 cm),8. 绿熟期,9. 破色期,10. 破色后10 d;醋栗番茄(S. pimpinellifolium),11. 绿果期,12. 破色期,13. 破色后5 d,14. 叶。b:1. 细菌鞭毛蛋白/对照病原相关分子模式 6 h,2~4. 不同丁香假单胞菌/对照细菌 6 h,5. 荧光假单胞菌/对照细菌 6 h,6. 恶臭假单胞菌/对照细菌 6 h,7. 根癌农杆菌/对照细菌 6 h。

    Figure  4.  Expression profiles of WRKY TFs in different tissues (a) and with pathogen infection (b) in tomato

    a: cultivated tomato Heinz1706, 1. bud, 2. flower, 3. leaf, 4. root, 5–7. fruit (1-3 cm), 8. mature green (MG), 9. breaker (B), 10. breaker+10 (B10); wild S. pimpinellifolium, 11. immature green (IM), 12. breaker (B), 13. breaker+5 (B5), 14. leaf. b: 1. flagellin (flgII-28)/mock pathogen-associated molecular pattern (PAMP) 6 h, 2-4. different Pseudomonas syringae strains (DC3000, DC3000ΔhrcQ-UΔfliC, and DC3000ΔAvrPtoΔAvrPtoB)/bacterial mock 6 h, 5. Pseudomonas fluorescens/bacterial mock 6 h, 6. Pseudomonas putida/bacterial mock 6 h, and 7. Agrobacterium tumefaciens/bacterial mock 6 h.

    图  5  番茄WRKY转录因子间的互作

    红色和绿色圆圈分别代表正负调控基因。圆圈大小表示互作因子数量,连接线宽度表示互作强度。

    Figure  5.  Interactions among WRKY TFs in tomato

    Red and green circles represent positively and negatively regulated genes, respectively; size of circle, number of interacting factors; thickness of gray line, interaction strength.

    表  1  番茄WRKY转录因子基因家族

    Table  1.   WRKY TF gene family in tomato

    基因 ID
    Gene ID
    AAMW/kDpIIISL基因 ID
    Gene ID
    AAMW/kDpIIISL
    Solyc01g058540.3 324 35.49 4.74 72.92 nucl Solyc05g050060.1 322 36.76 9.23 56.65 nucl
    Solyc01g079260.4 347 39.15 6.45 40.95 extr Solyc05g050065.1 126 14.62 9.11 58.95 nucl
    Solyc01g079360.4 240 26.88 5.03 49.87 nucl Solyc05g050300.3 195 22.57 6.06 53.10 cyto
    Solyc01g089960.3 288 32.57 8.60 46.70 nucl Solyc05g050330.3 244 27.54 6.02 54.36 nucl
    Solyc01g095100.4 315 34.95 6.50 63.97 nucl Solyc05g050340.4 218 24.58 5.05 46.20 nucl
    Solyc01g095630.3 336 37.73 5.55 58.66 nucl Solyc05g053380.4 304 34.36 7.75 56.40 nucl
    Solyc01g104550.3 475 52.98 6.09 50.54 nucl Solyc05g055750.3 459 51.65 8.77 45.35 nucl
    Solyc02g021680.3 381 42.63 5.37 47.45 nucl Solyc06g008610.3 348 39.05 9.64 53.70 nucl
    Solyc02g032950.3 504 56.31 8.17 49.81 nucl Solyc06g048870.3 243 26.85 6.15 38.10 nucl
    Solyc02g067430.3 440 48.40 6.99 60.86 nucl Solyc06g066370.4 549 61.30 6.72 60.62 vacu
    Solyc02g071130.4 329 37.85 6.55 55.76 nucl Solyc06g068460.3 360 39.74 8.37 43.78 nucl
    Solyc02g072190.4 304 33.99 6.29 70.76 nucl Solyc06g070990.3 649 71.66 6.07 52.36 nucl
    Solyc02g080890.3 550 59.66 7.25 45.54 nucl Solyc07g005650.4 513 56.29 6.41 56.26 nucl
    Solyc02g088340.4 460 50.95 6.20 59.45 nucl Solyc07g047960.3 420 45.96 6.93 69.06 nucl
    Solyc02g093050.3 326 36.21 9.65 48.66 nucl Solyc07g051840.4 660 72.08 6.32 50.50 nucl
    Solyc02g094270.2 131 15.47 9.51 35.84 cyto Solyc07g055280.4 275 29.90 5.48 55.13 nucl
    Solyc03g007380.2 353 40.06 6.09 51.86 nucl Solyc07g056280.3 322 36.65 6.00 61.72 nucl
    Solyc03g007640.1 359 41.14 6.98 64.88 nucl Solyc07g065260.4 601 65.55 6.58 49.22 nucl
    Solyc03g082750.1 178 20.73 9.64 38.54 chlo Solyc07g066220.3 739 79.85 6.04 51.97 nucl
    Solyc03g082810.1 219 25.05 6.55 43.49 nucl Solyc08g006320.4 335 36.44 9.70 37.80 nucl
    Solyc03g095770.3 273 31.53 6.02 55.04 nucl Solyc08g008280.3 360 40.71 5.51 47.00 nucl
    Solyc03g104810.3 486 53.90 6.83 66.50 nucl Solyc08g067340.4 279 31.95 9.31 50.58 nucl
    Solyc03g113120.4 530 58.87 6.83 43.04 nucl Solyc08g067360.3 258 29.35 5.60 51.10 nucl
    Solyc03g116890.3 350 39.18 8.73 48.24 nucl Solyc08g081610.4 303 34.69 5.49 56.18 nucl
    Solyc04g050205.1 117 13.73 9.54 44.50 cyto Solyc08g081630.2 231 26.41 8.97 56.81 pero
    Solyc04g050210.1 366 41.61 5.25 51.49 nucl Solyc08g082110.4 380 43.45 6.82 45.73 chlo
    Solyc04g051540.3 237 27.14 8.74 57.58 nucl Solyc09g010960.3 290 32.37 5.27 48.26 nucl
    Solyc04g051690.4 174 19.96 7.05 40.62 nucl Solyc09g014990.4 529 58.67 7.66 56.35 nucl
    Solyc04g056360.4 413 47.29 5.83 57.52 nucl Solyc09g015770.3 291 33.25 5.51 60.87 nucl
    Solyc04g072070.3 255 29.59 8.32 37.35 nucl Solyc09g066010.3 331 37.30 9.66 57.28 nucl
    Solyc04g078550.3 351 38.49 9.63 54.29 nucl Solyc10g005680.2 703 76.13 5.18 47.47 nucl
    Solyc05g007110.2 392 44.41 8.89 48.16 nucl Solyc10g007970.2 255 28.60 7.07 47.03 nucl
    Solyc05g012500.3 327 35.43 5.26 57.84 nucl Solyc10g009550.3 290 33.65 5.45 50.93 nucl
    Solyc05g012770.3 508 55.40 7.65 65.68 nucl Solyc10g011910.4 348 39.17 5.97 50.91 nucl
    Solyc05g014040.1 290 32.49 9.41 59.32 nucl Solyc10g084380.1 422 46.99 9.49 70.75 nucl
    Solyc05g015850.4 176 20.31 9.22 40.11 nucl Solyc12g006170.2 549 60.45 6.24 49.52 nucl
    Solyc05g045710.3 238 26.99 9.00 63.69 cyto Solyc12g011200.3 335 37.80 5.87 63.14 nucl
    Solyc05g045800.1 253 28.49 9.29 58.72 nucl Solyc12g014610.2 611 65.94 6.23 51.69 nucl
    Solyc05g045880.1 321 36.33 8.74 50.56 nucl Solyc12g042590.2 252 28.56 8.82 38.23 nucl
    Solyc05g045927.1 241 27.83 9.25 48.99 nucl Solyc12g056745.1 324 37.80 6.33 38.64 nucl
    Solyc05g050040.3 278 31.44 9.37 57.09 nucl Solyc12g056750.3 188 22.46 8.78 24.31 nucl
    Solyc05g050050.1 322 36.75 9.26 58.14 nucl Solyc12g096350.2 338 36.94 9.75 34.56 nucl
    Solyc05g050057.1 129 14.92 9.71 62.07 nucl
    1)AA:氨基酸数;MW:分子量;pI:理论等电点;II:不稳定系数;SL:亚细胞定位。2)nucl:细胞核;cyto:细胞质;chlo:叶绿体;pero:过氧化物酶体;extr:胞外间隙;vacu:液泡。
    1) AA: Number of amino acids; MW: molecular weight; pI: Theoretical isoelectric point; II: Instability index; SL: Subcellular localization. 2) nucl: Nucleus; cyto: Cytoplasm; chlo: Chloroplast; pero: Peroxysome; extr: Extracellular; vacu: Vacuole.
    下载: 导出CSV

    表  2  番茄WRKY转录因子染色体分布

    Table  2.   Distribution of WRKY TFs in tomato chromosomes

    染色体
    Chromosome
    基因数
    Genes
    基因簇
    Gene clusters
    成簇基因
    Genes in clusters
    单簇基因
    Genes per cluster
    成簇基因占比
    Percentage/%
    串联重复基因
    Tandem repeat genes
    重复基因占比
    Percentage/%
    Chr.1 7 0 0 0.0 0 0.0
    Chr.2 9 0 0 0.0 0 0.0
    Chr.3 8 1 2 2 25.0 0 0.0
    Chr.4 7 0 0 0.0 0 0.0
    Chr.5 19 3 12 4 63.2 9 47.4
    Chr.6 5 0 0 0.0 0 0.0
    Chr.7 7 0 0 0.0 0 0.0
    Chr.8 7 2 4 2 57.1 2 28.6
    Chr.9 4 0 0 0.0 0 0.0
    Chr.10 5 0 0 0.0 0 0.0
    Chr.11 0 0 0 0
    Chr.12 7 1 2 2 28.6 2 28.6
    —:表示不适用,下同。
    —: Not applicable. The same below.
    下载: 导出CSV

    表  3  番茄与辣椒、拟南芥之间的WRKY同源基因对

    Table  3.   WRKY homolog between tomato and chili pepper or Arabidopsis

    基因1
    Gene 1
    基因2
    Gene 2
    类别
    Group
    KaKsKa/Ks基因1
    Gene 1
    基因2
    Gene 2
    类别
    Group
    KaKsKa/Ks
    Solyc01g079260.4 Capana01g002803 IIc 0.114 0.654 0.174 Solyc08g082110.4 Capana01g004471 III 0.268 0.970 0.276
    Solyc01g089960.3 Capana01g003441 IIc 0.088 0.355 0.249 Solyc10g005680.2 Capana10g000205 I 0.236 0.283 0.834
    Solyc01g095100.4 Capana08g001012 IIe 0.042 0.301 0.140 Solyc10g009550.3 Capana08g001044 III 0.331 1.184 0.279
    Solyc01g095630.3 Capana08g001044 III 0.103 0.439 0.235 Solyc10g084380.1 Capana10g001791 I 0.072 0.231 0.314
    Solyc01g104550.3 Capana08g001961 IIb 0.052 0.262 0.199 Solyc12g006170.2 Capana00g004057 I 0.088 0.188 0.470
    Solyc02g067430.3 Capana02g000918 IIb 0.070 0.316 0.222 Solyc12g011200.3 Capana09g000676 IIc 0.071 0.228 0.310
    Solyc02g072190.4 Capana02g001642 IIe 0.066 0.389 0.169 Solyc01g079260.4 AT2G47260.1 IIc 0.488 1.512 0.323
    Solyc02g080890.3 Capana02g002230 IIb 0.054 0.373 0.144 Solyc01g089960.3 AT2G44745.1 IIc 0.289 2.165 0.134
    Solyc02g088340.4 Capana02g003339 I 0.080 0.222 0.359 Solyc01g095100.4 AT4G01250.1 IIe 0.382 1.931 0.198
    Solyc02g093050.3 Capana02g003053 IId 0.116 0.532 0.218 Solyc01g095630.3 AT2G46400.1 III 0.590
    Solyc02g094270.2 Capana02g003661 IIc 0.099 0.278 0.356 Solyc02g021680.3 AT2G34830.2 IIe 0.446
    Solyc03g007380.2 Capana03g002072 III 0.103 0.486 0.213 Solyc02g071130.4 AT4G18170.1 IIc 0.446 1.921 0.232
    Solyc03g007640.1 Capana03g002134 IIe 0.388 0.708 0.547 Solyc02g071130.4 AT5G46350.1 IIc 0.424 2.659 0.159
    Solyc03g082810.1 Capana03g001962 IIe 0.142 0.308 0.460 Solyc02g071130.4 AT1G29860.1 IIc 0.366 2.306 0.159
    Solyc03g095770.3 Capana03g002635 III 0.148 0.309 0.480 Solyc02g088340.4 AT1G13960.1 I 0.382 1.643 0.233
    Solyc03g113120.4 Capana03g001099 IIb 0.083 0.399 0.209 Solyc02g088340.4 AT3G01080.2 I 0.512
    Solyc03g116890.3 Capana03g000473 IIa 0.102 0.455 0.224 Solyc02g094270.2 AT3G01970.1 IIc 0.384
    Solyc04g051540.3 Capana12g001851 IIc 0.042 0.194 0.215 Solyc03g116890.3 AT1G80840.1 IIa 0.340 2.918 0.117
    Solyc04g051690.4 Capana12g001826 IIc 0.080 0.300 0.266 Solyc05g007110.2 AT1G69810.1 IIb 0.491
    Solyc04g056360.4 Capana05g002502 I 0.394 1.071 0.368 Solyc05g012500.3 AT1G69310.1 IIc 0.376 3.568 0.106
    Solyc04g078550.3 Capana04g000568 IId 0.066 0.660 0.099 Solyc05g012770.3 AT1G13960.1 I 0.285 2.483 0.115
    Solyc05g012500.3 Capana11g001905 IIc 0.132 0.357 0.369 Solyc05g012770.3 AT2G03340.1 I 0.290 2.177 0.133
    Solyc05g012770.3 Capana11g001882 I 0.045 0.346 0.130 Solyc06g048870.3 AT2G40740.3 NG 0.389 2.044 0.190
    Solyc05g055750.3 Capana05g002502 I 0.118 0.324 0.363 Solyc06g070990.3 AT1G18860.1 IIb 0.464 2.330 0.199
    Solyc06g008610.3 Capana06g003072 IId 0.042 0.251 0.168 Solyc06g070990.3 AT5G15130.1 IIb 0.524 3.356 0.156
    Solyc06g066370.4 Capana06g001506 I 0.032 0.261 0.123 Solyc07g047960.3 AT2G04880.1 I 0.513 2.372 0.216
    Solyc06g068460.3 Capana06g001110 IIa 0.053 0.282 0.187 Solyc07g065260.4 AT4G26640.2 I 0.370 2.286 0.162
    Solyc06g070990.3 Capana06g001008 IIb 0.058 0.396 0.146 Solyc08g006320.4 AT2G24570.1 IId 0.343 1.396 0.245
    Solyc07g005650.4 Capana07g000181 I 0.131 0.307 0.427 Solyc08g006320.4 AT4G31550.1 IId 0.401 2.820 0.142
    Solyc07g047960.3 Capana07g001256 I 0.089 0.162 0.553 Solyc08g081610.4 AT4G23550.1 IIe 0.552
    Solyc07g051840.4 Capana07g001387 IIb 0.061 0.259 0.235 Solyc08g082110.4 AT4G11070.1 III 0.439 2.534 0.173
    Solyc07g055280.4 Capana07g001809 IIe 0.087 0.445 0.195 Solyc08g082110.4 AT4G23810.1 III 0.436
    Solyc07g056280.3 Capana07g001968 IIc 0.051 0.251 0.202 Solyc09g014990.4 AT2G38470.1 I 0.368
    Solyc07g065260.4 Capana07g002350 I 0.054 0.176 0.308 Solyc10g005680.2 AT4G26440.1 I 0.524 1.613 0.325
    Solyc08g008280.3 Capana01g004471 III 0.131 0.401 0.327 Solyc10g084380.1 AT2G37260.1 I 0.496 2.115 0.235
    Solyc08g081610.4 Capana01g000167 IIe 0.076 0.228 0.334 Solyc12g014610.2 AT4G26640.2 I 0.394 2.070 0.190
    Solyc08g081630.2 Capana01g000165 IIc 0.187 0.522 0.358
    下载: 导出CSV

    表  4  番茄青枯菌诱导转录差异表达WRKY

    Table  4.   Transcriptionally DE WRKY TFs with RsI in tomato

    基因ID
    Gene ID
    类别
    Group
    RC_vs_RT
    FDR
    RC_vs_RT
    log2FC
    SC_vs_ST
    FDR
    SC_vs_ST
    log2FC
    GO/KEGG注释
    GO/KEGG annotation
    Solyc01g089960.3IIc0.00−0.990.900.05GO:0003700、GO:0006355、GO:0043565
    Solyc01g104550.3IIb0.030.650.620.22GO:0003700、GO:0006355、GO:0043565、GO:0044212
    Solyc02g032950.3IIb0.011.050.190.49GO:0003700、GO:0006355、GO:0043565
    Solyc03g095770.3III0.800.120.020.78GO:0003700、GO:0006355、GO:0043565
    Solyc04g051540.3IIc0.00−1.080.54−0.24GO:0003700、GO:0006355、GO:0043565
    Solyc05g050340.4III0.460.260.050.71GO:0003700、GO:0006355、GO:0043565
    Solyc05g055750.3I0.910.060.02−0.67GO:0003700、GO:0006355、GO:0043565
    Solyc07g051840.4IIb0.001.170.000.76GO:0003700、GO:0006355、GO:0043565
    Solyc09g014990.4I0.011.060.010.88GO:0003700、GO:0006355、GO:0043565、ko04626
    Solyc09g015770.3III0.200.610.001.44GO:0003700、GO:0006355、GO:0043565
    Solyc09g066010.3IId0.37−0.240.00−0.66GO:0003700、GO:0006355、GO:0043565
    Solyc10g009550.3III0.001.180.000.90GO:0003700、GO:0006355、GO:0043565
    R和S分别代表抗病和感病番茄自交系,C和T分别代表对照和青枯菌侵染。GO:0003700表示转录因子活性和序列特异性DNA结合,GO:0006355表示转录调控,GO:0043565表示序列特异性DNA结合,GO:0044212表示转录调控区DNA结合,ko04626表示植物-病原互作。
    R and S: resistant and susceptible tomato inbred lines, respectively; C: control; T: RsI. GO:0003700: transcription factor activity and sequence-specific DNA binding; GO:0006355: regulation of transcription; GO:0043565: sequence-specific DNA binding; GO:0044212: transcription regulatory region DNA binding; ko04626: plant-pathogen interaction.
    下载: 导出CSV
  • [1] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用 [J]. 科学通报, 2000, 45(14):1465−1474. doi: 10.3321/j.issn:0023-074X.2000.14.002

    LIU Q, ZHANG G Y, CHEN S Y. Structure and regulation of plant transcription factors [J]. Chinese Science Bulletin, 2000, 45(14): 1465−1474.(in Chinese) doi: 10.3321/j.issn:0023-074X.2000.14.002
    [2] RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors [J]. Trends in Plant Science, 2010, 15(5): 247−258. doi: 10.1016/j.tplants.2010.02.006
    [3] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors [J]. Trends in Plant Science, 2000, 5(5): 199−206. doi: 10.1016/S1360-1385(00)01600-9
    [4] AGARWAL P, REDDY M P, CHIKARA J. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants [J]. Molecular Biology Reports, 2011, 38(6): 3883−3896. doi: 10.1007/s11033-010-0504-5
    [5] 赵楠楠, 刘立峰. 植物WRKY转录因子及其生物学功能 [J]. 分子植物育种, 2019, 17(21):7040−7046. doi: 10.13271/j.mpb.017.007040

    ZHAO N N, LIU L F. WRKY transcription factors and their biological functions in plants [J]. Molecular Plant Breeding, 2019, 17(21): 7040−7046.(in Chinese) doi: 10.13271/j.mpb.017.007040
    [6] XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiology, 2005, 137(1): 176−189. doi: 10.1104/pp.104.054312
    [7] BAKSHI M, OELMÜLLER R. WRKY transcription factors: Jack of many trades in plants [J]. Plant Signaling & Behavior, 2014, 9(2): e27700.
    [8] WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Research, 2005, 12(1): 9−26. doi: 10.1093/dnares/12.1.9
    [9] ZHANG Y J, WANG L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants [J]. BMC Evolutionary Biology, 2005, 5(1): 1. doi: 10.1186/1471-2148-5-1
    [10] CHEN L G, SONG Y, LI S J, et al. The role of WRKY transcription factors in plant abiotic stresses [J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2): 120−128. doi: 10.1016/j.bbagrm.2011.09.002
    [11] ROSS C A, LIU Y, SHEN Q J. The WRKY gene family in rice (Oryza sativa) [J]. Journal of Integrative Plant Biology, 2007, 49(6): 827−842. doi: 10.1111/j.1744-7909.2007.00504.x
    [12] WEI K F, CHEN J, CHEN Y F, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize [J]. DNA Research, 2012, 19(2): 153−164. doi: 10.1093/dnares/dsr048
    [13] BENCKE-MALATO M, CABREIRA C, WIEBKE-STROHM B, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection [J]. BMC Plant Biology, 2014, 14: 236. doi: 10.1186/s12870-014-0236-0
    [14] ZHANG C, WANG D D, YANG C H, et al. Genome-wide identification of the potato WRKY transcription factor family [J]. PLoS One, 2017, 12(7): e0181573. doi: 10.1371/journal.pone.0181573
    [15] HUANG S X, GAO Y F, LIU J K, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum [J]. Molecular Genetics and Genomics, 2012, 287(6): 495−513. doi: 10.1007/s00438-012-0696-6
    [16] YANG Y, LIU J, ZHOU X H, et al. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant [J]. PeerJ, 2020, 8: e8777. doi: 10.7717/peerj.8777
    [17] SCIENCE F I P. Retraction: Genome-wide identification and expression analysis of WRKY gene family in Capsicum annuum L [J]. Frontiers in Plant Science, 2016, 7: 1727.
    [18] LING J, JIANG W J, ZHANG Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus [J]. BMC Genomics, 2011, 12: 471. doi: 10.1186/1471-2164-12-471
    [19] PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: Molecular regulation and stress responses in plants [J]. Frontiers in Plant Science, 2016, 7: 760.
    [20] 史建磊, 熊自立, 苏世闻, 等. 基于RNA-seq的番茄青枯病响应基因鉴定与表达分析 [J]. 华北农学报, 2022, 37(2):171−182. doi: 10.7668/hbnxb.20192621

    SHI J L, XIONG Z L, SU S W, et al. Identification and expression analysis of bacterial wilt response genes based on RNA-seq in tomato [J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 171−182.(in Chinese) doi: 10.7668/hbnxb.20192621
    [21] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [22] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology: Tool for the unification of biology [J]. Nature Genetics, 2000, 25(1): 25−29. doi: 10.1038/75556
    [23] KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome [J]. Nucleic Acids Research, 2004, 32(Suppl_1): D277−D280.
    [24] LEE S W, HAN S W, SRIRIYANUM M, et al. A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity [J]. Science, 2009, 326(5954): 850−853. doi: 10.1126/science.1173438
    [25] 张红, 姜景彬, 许向阳, 等. 番茄WRKY基因家族的生物信息学分析 [J]. 分子植物育种, 2016, 14(8):1965−1976. doi: 10.13271/j.mpb.014.001965

    ZHANG H, JIANG J B, XU X Y, et al. Bioinformatics analysis of WRKY gene family in tomato [J]. Molecular Plant Breeding, 2016, 14(8): 1965−1976.(in Chinese) doi: 10.13271/j.mpb.014.001965
    [26] SONG H, SUN W H, YANG G F, et al. WRKY transcription factors in legumes [J]. BMC Plant Biology, 2018, 18(1): 243. doi: 10.1186/s12870-018-1467-2
    [27] MOHANTA T K, PARK Y H, BAE H H. Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage [J]. Scientific Reports, 2016, 6(1): 1−22. doi: 10.1038/s41598-016-0001-8
    [28] CHEN F, HU Y, VANNOZZI A, et al. The WRKY transcription factor family in model plants and crops [J]. Critical Reviews in Plant Sciences, 2017, 36(5/6): 311−335.
    [29] 刁卫平, 王述彬, 刘金兵, 等. 辣椒全基因组WRKY转录因子的分析 [J]. 园艺学报, 2015, 42(11):2183−2196.

    DIAO W P, WANG S B, LIU J B, et al. Genome-wide analysis of the WRKY transcription factor family in pepper [J]. Acta Horticulturae Sinica, 2015, 42(11): 2183−2196.(in Chinese)
    [30] LIU J L, LIU X L, DAI L Y, et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants [J]. Journal of Genetics and Genomics, 2007, 34(9): 765−776. doi: 10.1016/S1673-8527(07)60087-3
    [31] ÜLKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function [J]. Current Opinion in Plant Biology, 2004, 7(5): 491−498. doi: 10.1016/j.pbi.2004.07.012
    [32] RINERSON C I, RABARA R C, TRIPATHI P, et al. The evolution of WRKY transcription factors [J]. BMC Plant Biology, 2015, 15: 66. doi: 10.1186/s12870-015-0456-y
    [33] DESLANDES L, OLIVIER J, THEULIERES F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2404−2409. doi: 10.1073/pnas.032485099
    [34] MUKHTAR M S, DESLANDES L, AURIAC M C, et al. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum [J]. The Plant Journal, 2008, 56(6): 935−947. doi: 10.1111/j.1365-313X.2008.03651.x
    [35] DANG F F, WANG Y N, YU L, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection [J]. Plant, Cell & Environment, 2013, 36(4): 757−774.
    [36] CAI H Y, YANG S, YAN Y, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper [J]. Journal of Experimental Botany, 2015, 66(11): 3163−3174. doi: 10.1093/jxb/erv125
    [37] HUSSAIN A, LI X, WENG Y H, et al. CaWRKY22 acts as a positive regulator in pepper response to RalstoniaSolanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58 [J]. International Journal of Molecular Sciences, 2018, 19(5): 1426. doi: 10.3390/ijms19051426
    [38] DANG F F, WANG Y N, SHE J J, et al. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection [J]. Physiologia Plantarum, 2014, 150(3): 397−411. doi: 10.1111/ppl.12093
    [39] YANG S, ZHANG Y W, CAI W W, et al. CaWRKY28 Cys249 is required for interaction with CaWRKY40 in the regulation of pepper immunity to Ralstonia solanacearum [J]. Molecular Plant-Microbe Interactions:MPMI, 2021, 34(7): 733−745. doi: 10.1094/MPMI-12-20-0361-R
    [40] HUSSAIN A, KHAN M I, ALBAQAMI M, et al. CaWRKY30 positively regulates pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum inoculation through modulating defense-related genes [J]. International Journal of Molecular Sciences, 2021, 22(21): 12091. doi: 10.3390/ijms222112091
    [41] IFNAN KHAN M, ZHANG Y W, LIU Z Q, et al. CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40 [J]. International Journal of Molecular Sciences, 2018, 19(5): 1403. doi: 10.3390/ijms19051403
    [42] WANG Y N, DANG F F, LIU Z Q, et al. CaWRKY58, encoding a group WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection [J]. Molecular Plant Physiology, 2013, 14(2): 131−144.
    [43] 谢政文, 王连军, 陈锦洋, 等. 植物WRKY转录因子及其生物学功能研究进展 [J]. 中国农业科技导报, 2016, 18(3):46−54. doi: 10.13304/j.nykjdb.2015.605

    XIE Z W, WANG L J, CHEN J Y, et al. Studies on WRKY transcription factors and their biological functions in plants [J]. Journal of Agricultural Science and Technology, 2016, 18(3): 46−54.(in Chinese) doi: 10.13304/j.nykjdb.2015.605
    [44] CHENG Y, ZHOU Y, YANG Y, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors [J]. Plant Physiology, 2012, 159(2): 810−825. doi: 10.1104/pp.112.196816
    [45] PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin [J]. FEBS Letters, 2005, 579(6): 1545−1550. doi: 10.1016/j.febslet.2005.01.057
    [46] 黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展 [J]. 生物技术通报, 2019, 35(12):129−143. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626

    HUANG X, DING F, PENG H X, et al. Research progress on family of plant WRKY transcription factors [J]. Biotechnology Bulletin, 2019, 35(12): 129−143.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  241
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-01-30
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回