• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伏牛山3种典型针叶林植硅体碳的封存特性及稳定性比较研究

张楚磊 鲁静 李晓林 张子铮 田耀武

张楚磊,鲁静,李晓林,等. 伏牛山3种典型针叶林植硅体碳的封存特性及稳定性比较研究 [J]. 福建农业学报,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015
引用本文: 张楚磊,鲁静,李晓林,等. 伏牛山3种典型针叶林植硅体碳的封存特性及稳定性比较研究 [J]. 福建农业学报,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015
ZHANG C, LU J, LI X L, et al. Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015
Citation: ZHANG C, LU J, LI X L, et al. Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015

伏牛山3种典型针叶林植硅体碳的封存特性及稳定性比较研究

doi: 10.19303/j.issn.1008-0384.2023.09.015
基金项目: 国家自然科学基金(32271848)
详细信息
    作者简介:

    张楚磊(1998 — ),男,硕士生,主要从事森林生态研究,E-mail:15538865861@163.com

    通讯作者:

    田耀武(1975 — ),男,博士,教授,主要从事森林生态研究,E-mail:tianyaowu@162.com

  • 中图分类号: S153

Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu

  • 摘要:   目的  通过对伏牛山3种针叶林植物器官、枯落物和土壤中植硅体及植硅体碳的研究,探讨不同林分间植硅体碳的封存特性及稳定性差异,为长期固碳提供理论依据。  方法  在伏牛山的雪松(Cedrus deodara)、圆柏(Sabina chinensis)、侧柏(Platycladus orientalis)3种森林中对植物各器官、枯落物和0~50 cm深的土壤剖面进行采样,基于质量平衡法研究了土壤与植物体内的植硅体、植硅体碳和二氧化硅(SiO2)的含量。  结果  雪松各器官植硅体含量在1.49~3.27 g·kg−1,植硅体碳含量在0.030~0.114 g·kg−1。圆柏各器官植硅体含量在1.44~2.56 g·kg−1,植硅体碳含量在0.036~0.085g·kg−1。侧柏各器官植硅体含量在1.86~2.90 g·kg−1,植硅体碳含量在0.038~0.083 g·kg−1。本研究估算了植硅体碳在各林分中的生产通量与周转时间,圆柏林中土壤植硅体碳储量(1.64 t·hm−2)高于雪松林(1.17 t·hm−2)和侧柏林(0.77 t·hm−2),且圆柏林植硅体碳周转时间(1813.16 a)长于雪松林(218.78 a)和侧柏林(556.44 a)。  结论  不同的森林类型对植硅体及植硅体碳的生产速率和周转时间会有显著影响,在未来的针叶林森林管理计划中优化圆柏的造林/再造林会显著增强未来几个世纪的生物地球化学碳汇。
  • 图  1  不同植物体内植硅体与植硅体碳、二氧化硅的相关性

    A、B分别为雪松植物体内植硅体与植硅体碳、二氧化硅相关性;C、D分别为圆柏植物体内植硅体与植硅体碳、二氧化硅相关性;E、F分别为侧柏植物体内植硅体与植硅体碳、二氧化硅相关性。

    Figure  1.  Correlations between phytoliths and PhytOC or SiO2 in plant organs at various forests

    A or B: Correlation between phytoliths and PhytOC or SiO2 in plant organs at C. deodara forest; C or D: correlation between phytoliths and PhytOC or SiO2 in plant organs at S. chinensis forest; E or F: correlation between phytoliths and PhytOC or SiO2 in plant organs at P. orientalis forest.

    图  2  3种林分土壤剖面中植硅体(A)及植硅体碳(B)的变化

    Figure  2.  Changes in phytoliths (A) and PhytOC (B) of 3 forest soils

    图  3  土壤植硅体含量和土壤植硅体碳含量的相关性

    Figure  3.  Correlation between phytolith and PhytOC contents in soil

    表  1  供试不同森林中不同树种器官中的植硅体、植硅体中有机碳、植硅体碳和SiO2含量

    Table  1.   Phytoliths and C in phytoliths, PhytOC, and SiO2 in plant organs at forests

    器官
    Organs
    植硅体含量
    Phytoliths content/(g·kg−1
    植硅体中有机碳含量
    C in phytoliths/(g·kg−1
    植硅体碳含量
    PhytOC content/(g·kg−1
    SiO2含量
    SiO2 content/(g·kg−1
    雪松雄花序
    Cedar male inflorescence
    3.24±0.08 c 33.94±0.81 c 0.110±0.002 c 2.66±0.22 c
    雪松松针
    Cedar leaf
    3.27±0.17 c 34.82±1.36 c 0.114±0.005 c 2.70±0.05 c
    雪松枝
    Cedar branch
    2.22±0.28 ef 19.34±1.43 f 0.043±0.004 fgh 1.20±0.06 g
    雪松干
    Cedar trunk
    1.49±0.09 gh 20.23±1.81 f 0.030±0.001 h 0.96±0.12 g
    雪松根
    Cedar root
    2.30±0.05 ef 36.01±0.52 c 0.083±0.001 de 2.25±0.06 d
    圆柏叶
    Sabina chinensis leaf
    1.78±0.16 fgh 20.53±1.61 f 0.036±0.006 gh 1.91±0.06 ef
    圆柏枝
    Sabina chinensis branch
    1.44±0.30 h 29.16±1.48 d 0.042±0.007 gh 1.76±0.03 f
    圆柏干
    Sabina chinensis trunk
    2.01±0.43 efg 25.29±2.40 f 0.051±0.006 fgh 2.66±0.12 c
    圆柏根
    Sabina chinensis root
    2.56±0.21 de 33.33±0.47 c 0.085±0.006 d 2.64±0.07 c
    侧柏果
    Platycladus orientalis fruit
    2.22±0.11 ef 19.34±1.51 f 0.043±0.004 fgh 2.12±0.05 de
    侧柏叶
    Platycladus orientalis leaf
    1.86±0.22 fgh 20.53±1.20 f 0.038±0.006 gh 1.86±0.02 ef
    侧柏枝
    Platycladus orientalis branch
    2.30±0.22 ef 25.29±1.75 f 0.058±0.009 efg 2.10±0.08 de
    侧柏干
    Platycladus orientalis trunk
    2.33±0.02 ef 29.16±1.31 d 0.068±0.004 def 2.16±0.24 de
    侧柏根
    Platycladus orientalis root
    2.9±0.44 cd 28.57±0.33 de 0.083±0.013 de 2.59±0.14 c
    雪松枯落物
    Cedar litter
    5.17±0.04 a 58.62±1.96 a 0.303±0.012 a 4.83±0.24 a
    圆柏枯落物
    Sabina chinensis litter
    4.31±0.07 b 46.72±1.86 b 0.201±0.005 b 3.60±0.19 b
    侧柏枯落物
    Platycladus orientalis litter
    4.13±0.66 b 45.23±3.42 b 0.187±0.040 b 3.39±0.19 b
    同列不同小写字母表示不同森林类型与不同器官间差异显著(P<0.05)。
    Data with different lowercase letters on same column indicate significant difference at P<0.05.
    下载: 导出CSV

    表  2  研究区森林0~50 cm土壤深度内土壤容重(BD)、酸碱度(pH)、植硅体碳含量、植硅体中有机碳含量、植硅体碳含量和SiO2含量

    Table  2.   Bulk density, pH, phytoliths, C in phytoliths, PhytOC, and SiO2 in 0-50 cm soil at various forests

    森林类型
    Forest type
    土壤深度
    Soil depth/cm
    土壤容重
    BD
    酸碱度
    pH
    植硅体含量
    Phytoliths content/
    (g·kg−1
    植硅体中有机碳含量
    C in phytoliths/
    (g·kg−1
    植硅体碳含量
    PhytOC content/
    (g·kg−1
    SiO2含量
    SiO2 content/
    (g·kg−1
    雪松林
    Cedar forest
    0~10 1.27 9.25 13.01±0.59 a 24.89±0.60 b 0.32±0.018 a 12.09±0.16 a
    >10~20 1.32 7.21 11.97±0.71 b 23.01±0.21 c 0.28±0.018 b 12.22±0.47 a
    >20~30 1.33 7.01 3.16±0.02 i 19.36±0.76 e 0.06±0.003 ge 2.83±0.16 g
    >30~40 1.41 7.12 4.89±0.59 fg 20.63±0.98 d 0.10±0.015 ef 4.77±0.10 f
    >40~50 1.47 7.25 5.12±0.11 f 22.16±0.33 c 0.11±0.004 e 5.49±0.05 e
    圆柏林
    Sabina chinensis forest
    0~10 1.14 7.04 12.23±0.18 ab 26.48±0.51 a 0.32±0.004 a 10.00±0.38 b
    >10~20 1.18 6.95 12.72±0.53 ab 25.51±0.18 ab 0.32±0.014 a 9.77±0.26 b
    >20~30 1.22 7.06 9.25±1.06 cd 24.82±1.04 b 0.23±0.029 c 6.95±0.41 d
    >30~40 1.23 7.10 9.64±0.18 c 24.94±0.20 b 0.24±0.006 c 6.98±0.15 d
    >40~50 1.23 7.02 9.94±0.33 c 25.63±0.90 ab 0.25±0.017 bc 7.14±0.16 d
    侧柏林
    Platycladus orientalis forest
    0~10 1.22 7.17 9.25±0.49 cd 25.57±0.17 ab 0.24±0.014 c 7.91±0.72 c
    >10~20 1.29 7.24 8.39±0.07 e 23.31±0.33 c 0.20±0.004 d 6.98±0.37 d
    >20~30 1.31 7.16 3.24±0.35 i 12.40±0.82 g 0.04±0.002 e 2.47±0.34 g
    >30~40 1.31 7.03 4.02±0.10 gh 15.57±0.44 f 0.06±0.003 ge 2.64±0.10 g
    >40~50 1.33 7.01 4.37±0.13 fg 16.30±0.49 f 0.07±0.004 fg 2.70±0.37 g
    不同小写字母表示不同林分与不同土层间差异显著(P<0.05)。
    Data with different lowercase letters on same column indicate significant difference at P<0.05.
    下载: 导出CSV

    表  3  3种森林类型中植硅体生产通量、植硅体碳生产通量、植硅体碳储量和周转时间

    Table  3.   Phytolith production flux, PhytOC production flux, PhytOC storage and turnover time at 3 types of forest

    森林类型   
    Forest type   
    植硅体生产通量
    Phytolith production flux/
    (kg∙hm−2∙a−1
    植硅体碳生产通量
    PhytOC production flux/
    (kg∙hm−2∙a−1
    植硅体碳储量
    PhytOC storage/
    (t∙hm−2
    周转时间
    Turnover time/a
    雪松林
    Cedar forest
    9.13 0.53 1.17 218.78
    圆柏林
    Sabina chinensis forest
    1.94 0.09 1.64 1813.16
    侧柏林
    Platycladus orientalis forest
    3.05 0.14 0.77 556.44
    下载: 导出CSV
  • [1] IPCC. Land Use, Land Use Change and Forestry. Special Report, Inter-Governmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2000.
    [2] 孟赐福, 姜培坤, 徐秋芳, 等. 植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用 [J]. 浙江农林大学学报, 2013, 30(6):921−929. doi: 10.11833/j.issn.2095-0756.2013.06.018

    MENG C F, JIANG P K, XU Q F, et al. PhytOC in plant ecological system and its important roles in the global soil carbon sink [J]. Journal of Zhejiang A & F University, 2013, 30(6): 921−929.(in Chinese) doi: 10.11833/j.issn.2095-0756.2013.06.018
    [3] LAW B E, HARMON M E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change [J]. Carbon Management, 2011, 2(1): 73−84. doi: 10.4155/cmt.10.40
    [4] KORNER C. Carbon limitation in trees [J]. Journal of Ecology, 2003, 91(1): 4−17. doi: 10.1046/j.1365-2745.2003.00742.x
    [5] DEWAR R C, CANNELL M G R. Carbon sequestration in the trees, products and soils of forest plantations: An analysis using UK examples [J]. Tree Physiology, 1992, 11(1): 49−71. doi: 10.1093/treephys/11.1.49
    [6] SONG Z L, WANG H L, STRONG P J, et al. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration [J]. Earth-Science Reviews, 2012, 115(4): 319−331. doi: 10.1016/j.earscirev.2012.09.006
    [7] JANSSON C, WULLSCHLEGER S D, KALLURI U C, et al. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering [J]. BioScience, 2010, 60(9): 685−696. doi: 10.1525/bio.2010.60.9.6
    [8] SONG Z L, PARR J F, GUO F S. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization [J]. PLoS One, 2013, 8(9): e73747. doi: 10.1371/journal.pone.0073747
    [9] JONES L H P, MILNE A A. Studies of silica in the oat plant [J]. Plant and Soil, 1963, 18(2): 207−220. doi: 10.1007/BF01347875
    [10] PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths [J]. Soil Biology and Biochemistry, 2005, 37(1): 117−124. doi: 10.1016/j.soilbio.2004.06.013
    [11] 加鹏华, 李春雨, 尹海魁, 等. 太行山区不同海拔梯度土壤有机碳库及组分变化特征 [J]. 林业与生态科学, 2021, 36(3):269−276.

    JIA P H, LI C Y, YIN H K, et al. Changes of soil organic carbon pools and their components in different altitudinal gradients in Taihang Mountains [J]. Forestry and Ecological Sciences, 2021, 36(3): 269−276.(in Chinese)
    [12] ZUO X X, LU H Y, GU Z Y. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles [J]. Plant and Soil, 2014, 374(1): 223−232.
    [13] ZUO X X, LÜ H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China [J]. Chinese Science Bulletin, 2011, 56(32): 3451−3456. doi: 10.1007/s11434-011-4674-x
    [14] PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars [J]. Plant and Soil, 2011, 342(1): 165−171.
    [15] LI Z M, SONG Z L, JIANG P K. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China [J]. Chinese Science Bulletin, 2013, 58(20): 2480−2487. doi: 10.1007/s11434-013-5785-3
    [16] 尹帅, 姜培坤, 孟赐福, 等. 绿竹和麻竹地上部植硅体碳封存潜力 [J]. 生态学报, 2017, 37(20):6827−6835.

    YIN S, JIANG P K, MENG C F, et al. Comparison of PhytOC sequestration rates in above-ground apart of Dendrocalamopsis oldhami(Munro) Keng f. and Dendrocalamus latiflorus Munro [J]. Acta Ecologica Sinica, 2017, 37(20): 6827−6835.(in Chinese)
    [17] 王霞, 胡海波, 程璨, 等. 北亚热带麻栎林土壤植硅体碳储量研究 [J]. 浙江农林大学学报, 2021, 38(1):1−9. doi: 10.11833/j.issn.2095-0756.20200283

    WANG X, HU H B, CHENG C, et al. Soil PhytOC sequestration in Quercus acutissima forest in northern subtropics [J]. Journal of Zhejiang A & F University, 2021, 38(1): 1−9.(in Chinese) doi: 10.11833/j.issn.2095-0756.20200283
    [18] LI B L, SONG Z L, WANG H L, et al. Phytolith carbon sequestration in bamboos of different ecotypes: A case study in China [J]. Chinese Science Bulletin, 2014, 59(34): 4816−4822. doi: 10.1007/s11434-014-0474-4
    [19] SONG Z L, LIU H Y, LI B L, et al. The production of phytolith-occluded carbon in China’s forests: Implications to biogeochemical carbon sequestration [J]. Global Change Biology, 2013, 19(9): 2907−2915. doi: 10.1111/gcb.12275
    [20] FAO U. World reference base for soil resources 2014. International soil classification system for Naming soils and creating legends for soil maps[M]. ROME: World Soil Resources Reports No 106, 2014.
    [21] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [22] PARR J F, SULLIVAN L A. Comparison of two methods for the isolation of phytolith occluded carbon from plant material [J]. Plant and Soil, 2014, 374(1): 45−53.
    [23] LI Z M, SONG Z L, PARR J F, et al. Occluded C in rice phytoliths: Implications to biogeochemical carbon sequestration [J]. Plant and Soil, 2013, 370(1): 615−623.
    [24] WALKLEY A, BLACK I A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method [J]. Soil Science, 1934, 37(1): 29−38. doi: 10.1097/00010694-193401000-00003
    [25] SONG Z L, LIU H Y, SI Y, et al. The production of phytoliths inC hina’s grasslands: Implications to the biogeochemical sequestration of atmosphericCO2 [J]. Global Change Biology, 2012, 18(12): 3647−3653. doi: 10.1111/gcb.12017
    [26] 冯宗炜, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999.
    [27] WEBB E A, LONGSTAFFE F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass [J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1891−1904. doi: 10.1016/S0016-7037(02)00822-0
    [28] CORNELIS J T, RANGER J, ISERENTANT A, et al. Tree species impact the terrestrial cycle of silicon through various uptakes [J]. Biogeochemistry, 2010, 97(2): 231−245.
    [29] 林维雷, 应雨骐, 姜培坤, 等. 浙江南部亚热带森林土壤植硅体碳的研究 [J]. 土壤学报, 2015, 52(6):1365−1373.

    LIN W L, YING Y Q, JIANG P K, et al. Study on phytolith-occluded organic carbon in soil of subtropical forest of southern Zhejiang [J]. Acta Pedologica Sinica, 2015, 52(6): 1365−1373.(in Chinese)
    [30] VAN ELSAS J D, TREVORS J T, VAN OVERBEEK L S. Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms [J]. Biology and Fertility of Soils, 1991, 10(4): 249−255. doi: 10.1007/BF00337375
    [31] BURKHARDT M, KASTEEL R, VANDERBORGHT J, et al. Field study on colloid transport using fluorescent microspheres [J]. European Journal of Soil Science, 2007, 59(1): 82−93. doi: 10.1111/j.1365-2389.2007.00989.x
    [32] FISHKIS O, INGWERSEN J, LAMERS M, et al. Phytolith transport in soil: A field study using fluorescent labelling [J]. Geoderma, 2010, 157(1/2): 27−36.
    [33] CLARKE J. The occurrence and significance of biogenic opal in the regolith [J]. Earth-Science Reviews, 2003, 60(3/4): 175−194.
    [34] ALEXANDRE A, MEUNIER J D, COLIN F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes [J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677−682. doi: 10.1016/S0016-7037(97)00001-X
    [35] FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface properties, solubility and dissolution kinetics of bamboo phytoliths [J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 1939−1951. doi: 10.1016/j.gca.2005.12.025
    [36] LI Z M, SONG Z L, CORNELIS J T. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon [J]. Frontiers in Plant Science, 2014, 5: 529.
    [37] SOMMER M, JOCHHEIM H, HÖHN A, et al. Si cycling in a forest biogeosystem–the importance of transient state biogenic Si pools [J]. Biogeosciences, 2013, 10(7): 4991−5007. doi: 10.5194/bg-10-4991-2013
    [38] FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions [J]. Chemical Geology, 2009, 258(3/4): 197−206.
    [39] YANG X M, SONG Z L, LIU H Y, et al. Phytolith accumulation in broadleaf and conifer forests of Northern China: Implications for phytolith carbon sequestration [J]. Geoderma, 2018, 312: 36−44. doi: 10.1016/j.geoderma.2017.10.005
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  137
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-07-07
  • 网络出版日期:  2023-10-25
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回