• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米咖啡酸O-甲基转移酶的全基因组鉴定与功能分析

张璐 赵月强 付家锋 张权 马春业 李英壮 张兰 王改革

张璐,赵月强,付家锋,等. 玉米咖啡酸O-甲基转移酶的全基因组鉴定与功能分析 [J]. 福建农业学报,2023,38(11):1259−1266 doi: 10.19303/j.issn.1008-0384.2023.11.001
引用本文: 张璐,赵月强,付家锋,等. 玉米咖啡酸O-甲基转移酶的全基因组鉴定与功能分析 [J]. 福建农业学报,2023,38(11):1259−1266 doi: 10.19303/j.issn.1008-0384.2023.11.001
ZHANG L, ZHAO Y Q, FU J F, et al. Identification and Functions of Caffeic Acid O-methyltransferase Genes in Maize [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1259−1266 doi: 10.19303/j.issn.1008-0384.2023.11.001
Citation: ZHANG L, ZHAO Y Q, FU J F, et al. Identification and Functions of Caffeic Acid O-methyltransferase Genes in Maize [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1259−1266 doi: 10.19303/j.issn.1008-0384.2023.11.001

玉米咖啡酸O-甲基转移酶的全基因组鉴定与功能分析

doi: 10.19303/j.issn.1008-0384.2023.11.001
基金项目: 国家玉米产业技术体系建设专项(nycytx-02)
详细信息
    作者简介:

    张璐(1986 —),女,硕士,助理研究员,主要从事作物遗传育种相关研究,E-mail: zhanglu19860320@163.com。张璐和赵月强对本研究具有同等贡献

    通讯作者:

    付家锋(1981 —),男,硕士,助理研究员,主要从事作物遗传育种相关研究,E-mail:fujiafeng11@126.com

  • 中图分类号: S513

Identification and Functions of Caffeic Acid O-methyltransferase Genes in Maize

  • 摘要:   目的  咖啡酸O-甲基转移酶(Caffeic acid O-methyltransferase,COMT)是褪黑素生物合成中的关键酶,在植物的生长、发育和抵御胁迫中发挥着重要的作用。本研究旨在探究COMT在玉米全基因组中的分布与盐胁迫响应情况,鉴定玉米咖啡酸O-甲基转移酶(COMT)基因。  方法  通过分析玉米COMT基因家族成员的结构特征、系统发育关系、基因结构、表达模式等,对ZmCOMTs基因进行系统分析,并通过过表达ZmCOMT12拟南芥对ZmCOMT的功能进行初步验证。  结果  在玉米全基因组中共鉴定出了28个COMT基因,根据系统发育分析分为2个分支(分支Ⅰ~II),大部分的COMT成员具有相似的motif组成和基因结构特征。利用玉米数据库分析ZmCOMTs的表达模式发现部分基因存在组织特异性,实时荧光定量PCR发现ZmCOMTs被盐胁迫诱导表达,说明ZmCOMTs成员参与了盐胁迫的调控,过表达ZmCOMT12拟南芥提高了褪黑素的含量和耐盐性。  结论  通过序列比对、亲缘关系、蛋白结构分析得到了假定的褪黑素合成基因ZmCOMT12,过表达拟南芥发现该基因与褪黑素的合成和耐盐性相关。
  • 图  1  28个玉米ZmCOMTs的系统发育分析

    A:28个玉米ZmCOMTs的系统发育分析;B:拟南芥AtCOMT与玉米ZmCOMTs的系统发育分析。

    Figure  1.  Phylogenetic analysis on 28 ZmCOMTs

    A: Phylogenetic analysis on 28 ZmCOMTs; B: phylogenetic analyses on AtCOMT and ZmCOMTs.

    图  2  玉米ZmCOMTs的进化关系及motif组成与基因结构的关联分析

    A:ZmCOMTs的系统发育分析;B:ZmCOMTs的蛋白motif组成;C:ZmCOMTs的基因结构。

    Figure  2.  Evolutionary relationships and association between motif composition and gene structure of ZmCOMTs in maize

    A: Phylogenetic analysis on ZmCOMTs; B: protein motif composition of ZmCOMTs; C: gene structure of ZmCOMTs.

    图  3  ZmCOMTs的染色体定位与基因复制

    Figure  3.  Chromosomal localization and gene duplication of ZmCOMTs

    图  4  ZmCOMTs在不同组织中的表达

    a:节间6~7;b:节间7~8;c:叶片区1;d:叶片区2;e:叶片区3;f:成熟叶片8;g:果皮糊粉27 d;h:初生根5 d;i:根皮层5 d;j:根伸长区5 d;k:根分生区5 d;l:次生根7~8 d。

    Figure  4.  Expressions of ZmCOMTs in different tissues

    a: internode 6–7; b: internode 7–8; c: Leaf zone 1; d: Leaf zone 2; e: Leaf zone 3; f: Mature leaf 8; g: Pericarp aleurone 27 d; h: Primary root 5 d; i: Root cortex 5 d; j: Root elongation zone 5 d; k: Root meristem zone 5 d; l: Secondary root 7–8 d.

    图  5  ZmCOMTs在盐胁迫下的表达

    *、**分别表示与对照相比差异显著(P<0.05)和极显著(P<0.01)。

    Figure  5.  Expression of ZmCOMTs under salt stress

    * and ** mean significant difference (P<0.05) and extremely signigifant difference (P<0.01) with control.

    图  6  ZmCOMT12的功能研究

    A:ZmCOMT12过表达植株的表型;B:ZmCOMT12的相对表达水平;C:褪黑素含量检测;D:POD酶活检测;E:SOD酶活检测。**P < 0.01。

    Figure  6.  Functions of ZmCOMT12

    A: Phenotypes of ZmCOMT12 overexpressed plants; B: relative expression of ZmCOMT12; C: melatonin content determination; D: POD enzyme activity determination; E: SOD enzyme activity assay. **: P<0.01.

    表  1  引物信息

    Table  1.   Information on primer

    基因
    Gene
    上游引物 5′-3′
    Forward primer 5′-3′
    下游引物 5′-3′
    Reverse primer 5′-3′
    ZmCOMT4TACCGTCTCCAGCATCTTCGTCCTTGAACCACTCTT
    ZmCOMT6TCTGTTCCACGAGAGCATTGTCATCACCGAAGTTACC
    ZmCOMT13ATGTTGGCGGAGATATGTTGATAGATGGCTCGGAAGG
    ZmCOMT22GCTGATGCCGTTCTTCTAAGCCGATACCATTCTTCCTC
    ZmCOMT23GGACAGCCACTTCATCATGCAGTTCCTCAGTATCTTCA
    ZmCOMT24CACGAACGCCATACTGAAGACTCATCATATCCAACTACCA
    ZmCOMT25GGCTGATGAACCTGAACACGCTCGGAATGTACTCAA
    Actin1GCAGGTATTGTGATGGATTCCATTAGGTGGTCGGTGAG
    下载: 导出CSV

    表  2  ZmCOMT家族成员的基本信息

    Table  2.   Basic information on ZmCOMTs

    基因
    Gene
    编号
    ID
    氨基酸数量
    Amino
    acid amount
    等电点
    Isoelectric
    point
    分子质量
    Molecular
    weight/Da
    ZmCOMT1Zm00001eb0186303656.0439538.69
    ZmCOMT2Zm00001eb0186403755.7240568.66
    ZmCOMT3Zm00001eb0186603727.2740187.3
    ZmCOMT4Zm00001eb0405703724.9740596.44
    ZmCOMT5Zm00001eb0902303656.3740018.77
    ZmCOMT6Zm00001eb0908303635.6540252.51
    ZmCOMT7Zm00001eb0927703665.5339785.78
    ZmCOMT8Zm00001eb1647503545.5239183.45
    ZmCOMT9Zm00001eb1682903645.5439700.6
    ZmCOMT10Zm00001eb1695203915.4142526.25
    ZmCOMT11Zm00001eb1705903715.6640477.9
    ZmCOMT12Zm00001eb1724203645.4839553.44
    ZmCOMT13Zm00001eb1909203745.1539590.18
    ZmCOMT14Zm00001eb1915904175.0745060.54
    ZmCOMT15Zm00001eb1981403645.5739200.14
    ZmCOMT16Zm00001eb1981503795.7741100.43
    ZmCOMT17Zm00001eb2022003655.2339345.35
    ZmCOMT18Zm00001eb2928403595.8338600.51
    ZmCOMT19Zm00001eb2928503555.3738002.74
    ZmCOMT20Zm00001eb2928803565.4238880.9
    ZmCOMT21Zm00001eb2928903585.4638816.89
    ZmCOMT22Zm00001eb3067003654.8739122.97
    ZmCOMT23Zm00001eb3531103645.6139605.53
    ZmCOMT24Zm00001eb3923403625.5439456.21
    ZmCOMT25Zm00001eb4001903655.6639687.64
    ZmCOMT26Zm00001eb4051604055.7643159.01
    ZmCOMT27Zm00001eb4051803975.7642617.41
    ZmCOMT28Zm00001eb4122603645.4439950.98
    下载: 导出CSV
  • [1] ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin: A new plant hormone and/or a plant master regulator? [J]. Trends in Plant Science, 2019, 24(1): 38−48. doi: 10.1016/j.tplants.2018.10.010
    [2] GALANO A, TAN D X, REITER R J. Melatonin as a natural ally against oxidative stress: A physicochemical examination [J]. Journal of Pineal Research, 2011, 51(1): 1−16. doi: 10.1111/j.1600-079X.2011.00916.x
    [3] ZHANG N, SUN Q Q, ZHANG H J, et al. Roles of melatonin in abiotic stress resistance in plants [J]. Journal of Experimental Botany, 2015, 66(3): 647−656. doi: 10.1093/jxb/eru336
    [4] CHEN Y E, MAO J J, SUN L Q, et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity [J]. Physiologia Plantarum, 2018, 164(3): 349−363. doi: 10.1111/ppl.12737
    [5] BYEON Y, LEE H Y, LEE K, et al. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis [J]. Journal of Pineal Research, 2014, 57(2): 219−227. doi: 10.1111/jpi.12160
    [6] SCHUBERT H L, BLUMENTHAL R M, CHENG X D. Many paths to methyltransfer: A chronicle of convergence [J]. Trends in Biochemical Sciences, 2003, 28(6): 329−335. doi: 10.1016/S0968-0004(03)00090-2
    [7] YANG W J, DU Y T, ZHOU Y B, et al. Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis [J]. International Journal of Molecular Sciences, 2019, 20(3): 652. doi: 10.3390/ijms20030652
    [8] LI W, LU J X, LU K, et al. Cloning and phylogenetic analysis of Brassica napus L. caffeic acid O-methyltransferase 1 gene family and its expression pattern under drought stress [J]. PLoS One, 2016, 11(11): e0165975. doi: 10.1371/journal.pone.0165975
    [9] YAN Y Y, SUN S S, ZHAO N, et al. COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants[J]. Environmental Pollution, 2019, 252(Pt A): 51-61.
    [10] ZHANG Y X, FAN Y P, RUI C, et al. Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2 + signal transduction [J]. Frontiers in Plant Science, 2021, 12: 693690. doi: 10.3389/fpls.2021.693690
    [11] GÓMEZ-MERINO F C, BREARLEY C A, ORNATOWSKA M, et al. AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1, 2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression [J]. The Journal of Biological Chemistry, 2004, 279(9): 8230−8241. doi: 10.1074/jbc.M312187200
    [12] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [13] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [14] ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method [J]. Nature Protocols, 2006, 1(2): 641−646. doi: 10.1038/nprot.2006.97
    [15] LIU Y S, WANG Y Z, PEI J B, et al. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit [J]. BMC Plant Biology, 2021, 21(1): 5. doi: 10.1186/s12870-020-02767-9
    [16] GUO C L, GUO R R, XU X Z, et al. Evolution and expression analysis of the grape (Vitis vinifera L. ) WRKY gene family [J]. Journal of Experimental Botany, 2014, 65(6): 1513−1528. doi: 10.1093/jxb/eru007
    [17] LIU Y, JIANG H Y, CHEN W J, et al. Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays) [J]. Plant Growth Regulation, 2011, 63(3): 225−234. doi: 10.1007/s10725-010-9519-0
    [18] ZHENG X D, TAN D X, ALLAN A C, et al. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress [J]. Scientific Reports, 2017, 7: 41236. doi: 10.1038/srep41236
    [19] LI C, WANG P, WEI Z W, et al. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis [J]. Journal of Pineal Research, 2012, 53(3): 298−306. doi: 10.1111/j.1600-079X.2012.00999.x
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  229
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-07-30
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回