• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苏州市夏季园林植物光合特性及固碳释氧、降温增湿效益研究

王秋艳 王利芬 肖湘东 陈曦 冯锋

王秋艳,王利芬,肖湘东,等. 苏州市夏季园林植物光合特性及固碳释氧、降温增湿效益研究 [J]. 福建农业学报,2023,38(11):1302−1311 doi: 10.19303/j.issn.1008-0384.2023.11.006
引用本文: 王秋艳,王利芬,肖湘东,等. 苏州市夏季园林植物光合特性及固碳释氧、降温增湿效益研究 [J]. 福建农业学报,2023,38(11):1302−1311 doi: 10.19303/j.issn.1008-0384.2023.11.006
WANG Q Y, WANG L F, XIAO X D, et al. Summertime Photosynthesis, Carbon-fixation, Oxygen-release, Atmosphere-cooling, and Humidifying Effect of Landscape Plants in Suzho [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1302−1311 doi: 10.19303/j.issn.1008-0384.2023.11.006
Citation: WANG Q Y, WANG L F, XIAO X D, et al. Summertime Photosynthesis, Carbon-fixation, Oxygen-release, Atmosphere-cooling, and Humidifying Effect of Landscape Plants in Suzho [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1302−1311 doi: 10.19303/j.issn.1008-0384.2023.11.006

苏州市夏季园林植物光合特性及固碳释氧、降温增湿效益研究

doi: 10.19303/j.issn.1008-0384.2023.11.006
基金项目: 国家自然科学基金面上项目(52178046);苏州大学-苏州园科协同创新中心项目基金(SY2022006)
详细信息
    作者简介:

    王秋艳(1998 —),女,硕士研究生,主要从事园林植物与应用研究,E-mail:992498895@qq.com

    通讯作者:

    王利芬(1976—),女,博士,副教授,主要从事园林植物生态修复和园林植物应用设计,E-mail:wanglf@suda.edu.cn

  • 中图分类号: S731.2

Summertime Photosynthesis, Carbon-fixation, Oxygen-release, Atmosphere-cooling, and Humidifying Effect of Landscape Plants in Suzho

  • 摘要:   目的  探究苏州市常见园林树种固碳释氧、降温增湿的能力。  方法  以苏州市白鹭园13种园林植物为研究对象,通过测定其光合生理指标,分析植物固碳释氧、降温增湿的综合效率及其影响因素。  结果  (1)13种植物净光合速率日变化主要呈单峰型和双峰型2种,蒸腾速率日变化主要呈单峰型。(2)单位叶面积日固碳量和释氧量最高的是榔榆(Ulmus parvifolia),分别为12.08、8.78 g·m−2·d−1,最低的是红枫(Acer palmatum 'Atropurpureum'),分别为3.50、2.54 g·m−2·d−1。单位叶面积日降温量和增湿量最高的是木槿(Hibiscus syriacus),分别为0.38 ℃和2376.15 g·m−2·d−1,红枫最低,分别为0.14 ℃和848.01 g·m−2·d−1。(3)园林植物固碳增湿量与净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、大气湿度(RH)、光合有效辐射(PAR)呈显著正相关,与叶面水气压亏缺(Vpdl)呈显著负相关。  结论  基于提高城市绿地碳汇功能和缓解热岛效应,在苏州地区乔木中可优选榔榆、朴树(Celtis sinensis)、香樟(Cinnamomum camphora)、垂柳(Salix babylonica)、枫香树(Liquidambar formosana)、重阳木(Bischofia polycarpa)等树种。桂花(Osmanthus fragrans)、珊瑚树(Viburnum odoratissimum)和木槿单位土地面积日固碳释氧、降温增湿效益差距不大。
  • 图  1  环境因子日变化

    Figure  1.  Daily variation on environmental factors

    图  2  13种园林植物净光合速率日变化

    Figure  2.  Diurnal variation on net photosynthetic rate of 13 landscape plants

    图  3  13种园林植物蒸腾速率日变化

    Figure  3.  Diurnal variation on transpiration rate of 13 landscape plants

    图  4  单位叶面积日固碳、释氧、降温增湿能力聚类分析

    Figure  4.  Cluster analysis on per leaf area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants

    图  5  单位土地面积日固碳、释氧、降温增湿能力聚类分析

    Figure  5.  Cluster analysis on per land area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants

    表  1  13种园林植物基本信息

    Table  1.   Basic information on 13 species of landscape plants in Suzhou

    树种
    Tree species
    类型
    Type
    平均胸径
    Mean DBH/cm
    平均冠幅
    Average crown width/m
    平均高度
    Average height/m
    冠高
    Crown height/m
    香樟
    Cinnamomum camphora
    常绿乔木
    Evergreen trees
    33.37±0.87 a 9.25±0.15 a 11.00±0.46 bc 6.67±0.25 b
    广玉兰
    Magnolia grandiflora
    常绿乔木
    Evergreen trees
    25.43±0.95 de 6.07±0.06 ef 8.10±0.53 f 4.50±0.10 e
    枫香树
    Liquidambar formosana
    落叶乔木
    Deciduous trees
    27.27±1.11 c 8.20±0.10 b 13.63±0.21 a 9.17±0.25 a
    榔榆
    Ulmus parvifolia
    落叶乔木
    Deciduous trees
    26.80±0.70 cd 5.82±0.06 g 8.43±0.31 ef 5.67±0.21 d
    榉树
    Zelkova serrata
    落叶乔木
    Deciduous trees
    27.30±0.95 c 7.60±0.13 c 9.37±0.50 d 6.23±0.23 c
    朴树
    Celtis sinensis
    落叶乔木
    Deciduous trees
    24.70±1.08 e 6.27±0.16 e 9.07±0.25 de 4.73±0.21 e
    垂柳
    Salix babylonica
    落叶乔木
    Deciduous trees
    26.50±0.70 cd 5.93±0.10 fg 10.33±0.50 c 6.20±0.26 c
    重阳木
    Bischofia polycarpa
    落叶乔木
    Deciduous trees
    29.5±0.82 b 6.73±0.03 d 11.10±0.30 b 6.37±0.12 bc
    白玉兰
    Yulania denudata
    落叶乔木
    Deciduous trees
    15.10±0.20 f 4.32±0.23 i 5.57±0.40 g 3.87±0.32 f
    红枫
    Acer palmatum 'Atropurpureum'
    落叶乔木
    Deciduous trees
    12.23±0.23 h 2.15±0.09 k 3.00±0.26 i 1.53±0.15 i
    桂花
    Osmanthus fragrans
    常绿灌木
    Evergreen shrubs
    4.68±0.03 h 4.97±0.23 gh 3.73±0.15 fg
    珊瑚树
    Viburnum
    odoratissimum
    常绿灌木
    Evergreen shrubs
    3.80±0.05 j 4.30±0.20 h 3.37±0.15 gh
    木槿
    Hibiscus syriacus
    落叶灌木
    Deciduous shrubs
    3.87±0.15 j 4.53±0.15 h 3.13±0.06 h
    同列数据后不同小写字母表示不同树种间在 0.05 水平差异显著。
    Data with different lowercase letters on same column indicate significant differences at level of 0.05.
    下载: 导出CSV

    表  2  13种园林植物单位叶面积日固碳释氧、降温增湿量

    Table  2.   Per leaf area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants

    树种
    Tree species
    总同化量
    $ {P} $/(mmol·m−2·d−1
    单位叶面积日固碳量
    $ {{W}}_{{{{\rm{co}}}}_{{2}}{}} $/(g·m−2·d−1
    单位叶面积日释氧量
    $ {{W}}_{{{{\rm{o}}}}_{{2}}{}} $/(g·m-2·d-1
    总蒸腾量
    $ {E} $ /(mmol·m−2·d−1
    单位叶面积日增湿量
    $ {{W}}_{{{{\rm{H}}}}_{{2}}{{\rm{O}}}} $/(g·m−2·d−1
    单位叶面积日降温量
    $ P_{\Delta T} $ /℃
    香樟 C. camphora 332.37±9.90 a 11.70±0.35 a 8.51±0.25 a 86.38±5.17 de 1554.86±93.02 de 0.25±0.01 de
    广玉兰 M. grandiflora 200.61±10.08 d 7.06±0.35 d 5.14±0.26 d 54.57±10.66 fg 982.27±191.81 fg 0.16±0.03 fg
    枫香树 L. formosana 261.80±9.86 c 9.22±0.35 c 6.70±0.25 c 90.01±7.50 d 1620.30±135.03 d 0.26±0.02 d
    榔榆 U. parvifolia 343.16±20.01 a 12.08±0.70 a 8.78±0.51 a 115.37±8.43 bc 2076.73±151.71 bc 0.33±0.02 bc
    榉树 Z. serrata 200.65±7.39 d 7.06±0.26 d 5.14±0.19 d 77.03±4.37 e 1386.53±78.58 e 0.22±0.01 e
    朴树 C. sinensis 337.41±25.14 a 11.88±0.88 a 8.64±0.64 a 121.65±2.39 ab 2189.66±43.09 ab 0.35±0.00 ab
    垂柳 S. babylonica 299.31±7.16 b 10.54±0.25 b 7.66±0.18 b 89.25±6.49 d 1606.47±116.87 d 0.26±0.19 d
    重阳木 B. polycarpa 276.45±6.50 bc 9.73±0.23 bc 7.08±0.17 bc 106.05±2.92 d 1908.89±52.54 d 0.31±0.08 d
    白玉兰 Y. denudata 194.78+8.04 de 6.86±0.28 de 4.99±0.21 de 61.48±3.02 f 1106.72±54.38 f 0.18±0.01 f
    红枫 A. palmatum 99.36±2.63 f 3.50±0.09 f 2.54±0.07 f 47.11±1.60 g 848.01±28.80 g 0.14±0.00 g
    桂花O. fragrans 174.60±10.21 e 6.15±0.36 e 4.47±0.26 e 56.98±3.81 fg 1025.67±68.55 fg 0.16±0.01 fg
    珊瑚树 V. odoratissimum 203.46±11.06 d 7.16±0.39 d 5.21±0.28 d 61.95±0.61 f 1115.02±11.04 f 0.18±0.00 f
    木槿 H. syriacus 271.08±5.78 c 9.54±0.20 c 6.94±0.15 c 132.01±5.70 a 2376.15±102.55 a 0.38±0.16 a
    常绿树种 Evergreen species 182.21±51.81 8.02±2.28 5.83±1.66 64.97±14.23 1169.46±256.22 0.19±0.04
    落叶树种 Deciduous species 203.02±60.16 8.93±2.64 6.50±1.93 93.33±27.50 1679.94±495.00 0.27±0.08
    乔木 Arbor 203.67±61.87 8.96±2.72 6.52±1.98 84.89±24.85 1528.05±447.25 0.25±0.07
    灌木 Shrub 173.10±34.91 7.62±1.54 5.54±1.12 83.65±36.50 1505.62±656.97 0.24±0.11
    平均值 Average value 196.62±57.86 8.65±2.55 6.29±1.85 84.60±27.42 1522.87±493.58 0.24±0.08
    下载: 导出CSV

    表  3  13种园林植物单位土地面积日固碳释氧、降温增湿量

    Table  3.   Per leaf area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants

    树种
    Tree species
    单株绿量
    Green quantity per
    plant/m3
    叶面积指数
    LAI
    单位土地面积
    日固碳量
    $ {{Q}}_{{{{\rm{CO}}}}_{{2}}} $/(g·m−2·d−1)
    单位土地面积
    日释氧量
    $ {{Q}}_{{{{\rm{O}}}}_{{2}}} $/(g·m−2·d−1)
    单位土地面积
    日增湿量
    $ {{V}}_{{{{\rm{H}}}}_{{2}}{{\rm{O}}}} $/(g·m−2·d−1
    单位土地面积
    日降温量
    PΔT/℃
    香樟 C. camphora 298.33±2.12 b 3.54±0.35 bc 41.42±1.23 a 30.12±0.90 a 5504.21±329.28 e 0.88±0.05 e
    广玉兰 M. grandiflora 86.66±0.97 g 3.64±0.65 abc 25.70±1.29 c 18.69±0.94 c 3575.48±698.18 fg 0.57±0.11 fg
    枫香树 L. formosana 322.45±1.46 a 3.61±0.27 bc 33.27±1.25 b 24.19±0.91 b 5849.29±487.47 de 0.94±0.08 de
    榔榆 U. parvifolia 100.29±1.79 f 3.58±0.37 bc 43.24±2.52 a 31.45±1.83 a 7434.69±543.12 ab 1.19±0.09 ab
    榉树 Z. serrata 188.30±1.30 c 3.72±0.26 abc 26.27±0.97 c 19.11±0.70 c 5157.91±292.30 e 0.83±0.05 e
    朴树 C. sinensis 97.18±1.90 f 3.47±0.30 c 41.21±3.07 a 29.97±2.23 a 7598.12±149.51 a 1.22±0.02 a
    垂柳 S. babylonica 114.14±0.97 e 3.92±0.35 ab 41.30±0.99 a 30.04±0.72 a 6297.37±458.11 cd 1.01±0.07 cd
    重阳木 B. polycarpa 151.05±1.43 d 3.54±0.62 bc 34.45±0.80 b 25.05±0.59 b 6757.47±186.00 bc 1.08±0.03 bc
    白玉兰 Y. denudata 37.59±2.26 i 2.16±0.35 e 14.81±0.61 e 10.77±0.44 e 2390.52±117.45 h 0.38±0.02 h
    红枫 A. palmatum 3.73±0.62 k 1.94±0.37 e 6.78±0.18 f 4.93±0.13 f 1645.13±55.86 i 0.26±0.01 i
    桂花 O. fragrans 42.86±1.93 h 4.04±0.33 a 24.83±1.45 c 18.06±1.06 c 4143.72±276.95 f 0.66±0.04 f
    珊瑚树 V. odoratissimum 38.16±1.70 i 3.05±0.40 d 21.84±1.19 d 15.88±0.86 d 3400.81±33.68 g 0.55±0.01 g
    木槿 H. syriacus 24.55±2.04 j 2.73±0.30 d 26.05±0.56 c 18.95±0.40 c 6486.90±279.97 cd 1.04±0.04 cd
    常绿树种 Evergreen species 113.63±113.92 3.57±0.56 28.45±8.04 20.69±5.85 4156.05±930.44 0.67±0.15
    落叶树种 Deciduous species 114.97±93.01 3.19±0.77 29.71±12.11 21.61±8.81 5513.05±2059.39 0.88±0.33
    乔木 Arbor 139.51±99.24 3.31±0.76 30.85±12.03 22.43±8.75 5221.02±2010.00 0.84±0.32
    灌木 Shrub 31.37±11.84 3.27±0.66 24.24±2.11 17.63±1.54 4677.14±1408.85 0..75±0.23
    平均值 Average value 114.56±98.37 3.30±0.73 29.32±10.93 21.32±7.95 5095.51±1885.46 0.82±0.30
    下载: 导出CSV

    表  4  13种园林植物光合特性相关性分析

    Table  4.   Correlation between photosynthetic characteristics of 13 landscape plants

     指标IndexPnGsCiTrVpdlTaTlCaRHPARWco2WH2O
    Pn 1
    Gs 0.862** 1
    Ci 0.012 0.391** 1
    Tr 0.827** 0.826** 0.113 1
    Vpdl −0.291** −0.440** −0.547** 0.043 1
    Ta −0.205 −0.356** −0.496** 0.132 0.960** 1
    Tl −0.204 −0.352** −0.494** 0.138 0.962** 1.000** 1
    Ca −0.674** −0.589** 0.247* −0.701** −0.102 −0.042 −0.047 1
    RH 0.313** 0.462** 0.582** −0.011 −0.933** −0.825** −0.830** 0.225* 1
    PAR 0.576** 0.394** −0.183 0.642** 0.258* 0.363** 0.360** −0.463** −0.139 1
    Wco2 0.977** 0.832** −0.102 0.709** −0.834** −0.728** −0.725** −0.655* 0.903** 0.722** 1
    WH2O 0.781** 0.955** 0.379 0.965** −0.622* −0.490 −0.482 −0.546 0.760** 0.659* 0.816** 1
    **和*分别表示极显著相关(P<0.01)和显著相关(P<0.05)。
    ** and * indicate extremely significant correlation(P<0.01) and significant correlation(P<0.05), respectively.
    下载: 导出CSV
  • [1] AKERLOF K, MAIBACH E W, FITZGERALD D, et al. Do people “personally experience” global warming, and if so how, and does it matter? [J]. Global Environmental Change, 2013, 23(1): 81−91. doi: 10.1016/j.gloenvcha.2012.07.006
    [2] YANG Q J, SU W Y, LIN Z Q. A microclimate model for plant transpiration effects [J]. Urban Climate, 2022, 45: 101240. doi: 10.1016/j.uclim.2022.101240
    [3] NOWAK D J, GREENFIELD E J, HOEHN R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States [J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019
    [4] JO H K, KIM J Y, PARK H M. Carbon reduction and planning strategies for urban parks in Seoul [J]. Urban Forestry & Urban Greening, 2019, 41: 48−54.
    [5] 于雅鑫, 胡希军, 金晓玲. 12种木兰科乔木固碳释氧和降温增湿能力研究 [J]. 广东农业科学, 2013, 40(6):47−50,60.

    YU Y X, HU X J, JIN X L. Carbon fixation and oxygen release, cooling and humidification of 12 Magnoliaceae species [J]. Guangdong Agricultural Sciences, 2013, 40(6): 47−50,60.(in Chinese)
    [6] 郭晖, 周慧, 张家洋. 郑州市15种常见园林树种固碳释氧能力分析研究 [J]. 西北林学院学报, 2017, 32(4):52−56. doi: 10.3969/j.issn.1001-7461.2017.04.09

    GUO H, ZHOU H, ZHANG J Y. Crbon fixation and oxygen release of 15 common landscape trees in Zhengzhou [J]. Journal of Northwest Forestry University, 2017, 32(4): 52−56.(in Chinese) doi: 10.3969/j.issn.1001-7461.2017.04.09
    [7] 陈小丽, 姜卫兵, 魏家星, 等. 南京地区观赏海棠树种固碳释氧与降温增湿效益 [J]. 江苏农业科学, 2017, 45(24):123−128.

    CHEN X L, JIANG W B, WEI J X, et al. Benefits of carbon fixation and oxygen release, cooling and humidification of ornamental begonia trees in Nanjing area [J]. Jiangsu Agricultural Sciences, 2017, 45(24): 123−128.(in Chinese)
    [8] 张艳丽, 费世民, 李智勇, 等. 成都市沙河主要绿化树种固碳释氧和降温增湿效益 [J]. 生态学报, 2013, 33(12):3878−3887. doi: 10.5846/stxb201205080672

    ZHANG Y L, FEI S M, LI Z Y, et al. Carbon sequestration and oxygen release as well as cooling and humidification efficiency of the main greening tree species of Sha River, Chengdu [J]. Acta Ecologica Sinica, 2013, 33(12): 3878−3887.(in Chinese) doi: 10.5846/stxb201205080672
    [9] 薛雪, 张金池, 孙永涛, 等. 上海常绿树种固碳释氧和降温增湿效益研究 [J]. 南京林业大学学报(自然科学版), 2016, 40(3):81−86.

    XUE X, ZHANG J C, SUN Y T, et al. Study of carbon seqestration & oxygen release and cooling & humidifying effect of main greening tree species in Shanghai [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3): 81−86.(in Chinese)
    [10] 邵永昌, 庄家尧, 王柏昌, 等. 上海地区主要绿化树种夏季光合特性和固碳释氧能力研究 [J]. 安徽农业大学学报, 2016, 43(1):94−101.

    SHAO Y C, ZHUANG J Y, WANG B C, et al. Photosynthetic characteristics and carbon sequestration and oxygen release capacity of the main urban landscape tree species during summer in Shanghai [J]. Journal of Anhui Agricultural University, 2016, 43(1): 94−101.(in Chinese)
    [11] 胡耀升, 么旭阳, 刘艳红. 北京市几种绿化树种的光合特性及生态效益比较 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(10):119−125.

    HU Y S, YAO X Y, LIU Y H. Photosynthetic characteristics and ecological benefits of greening tree species in Beijing [J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(10): 119−125.(in Chinese)
    [12] 孙方虎, 方凤满, 洪炜林, 等. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测 [J]. 水土保持学报, 2023, 37(1):151−158.

    SUN F H, FANG F M, HONG W L, et al. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model [J]. Journal of Soil and Water Conservation, 2023, 37(1): 151−158.(in Chinese)
    [13] 周坚华, 孙天纵. 三维绿色生物量的遥感模式研究与绿化环境效益估算 [J]. 环境遥感, 1995(3):162−174.

    ZHOU J H, SUN T Z. Study on remote sensing model of three-dimensional green biomass and the estimation of environmental benefits of greenery [J]. National Remote Sensing Bulletin, 1995(3): 162−174.(in Chinese)
    [14] 李辉, 赵卫智. 北京5种草坪地被植物生态效益的研究 [J]. 中国园林, 1998, 14(4):36−38.

    LI H, ZHAO W Z. Study on ecological benefits of five lawn ground cover plants in Beijing [J]. Journal of Chinese Landscape Architecture, 1998, 14(4): 36−38.(in Chinese)
    [15] 姚侠妹, 偶春, 夏璐, 等. 安徽沿淮地区小城镇主要景观树种固碳释氧和降温增湿效益评估 [J]. 生态学杂志, 2021, 40(5):1293−1304.

    YAO X M, OU C, XIA L, et al. Benefit evaluation of carbon sequestration, oxygen release, cooling and humidifying of the main landscape tree species in small towns along Huaihe River in Anhui Province [J]. Chinese Journal of Ecology, 2021, 40(5): 1293−1304.(in Chinese)
    [16] 冯建灿, 张玉洁. 喜树光合速率日变化及其影响因子的研究 [J]. 林业科学, 2002, 38(4):34−39.

    FENG J C, ZHANG Y J. Studies on the diurnal changes of net photosynthesis rate and the effect of environmental factors of Camptotheca acuminata [J]. Scientia Silvae Sinicae, 2002, 38(4): 34−39.(in Chinese)
    [17] 薛雪, 李娟娟, 郑云峰, 等. 5个常绿园林树种的夏季光合蒸腾特性 [J]. 林业科学, 2015, 51(9):150−156.

    XUE X, LI J J, ZHENG Y F, et al. Characteristics of photosynthesis and transpiration of five evergreen tree species in summer [J]. Scientia Silvae Sinicae, 2015, 51(9): 150−156.(in Chinese)
    [18] 陈月华, 廖建华, 覃事妮. 长沙地区19种园林植物光合特性及固碳释氧测定 [J]. 中南林业科技大学学报, 2012, 32(10):116−120.

    CHEN Y H, LIAO J H, QIN S N. Studies on photosynthetic characteristics and carbon fixation and oxygen release capabilities of 19 garden plants in Changsha area [J]. Journal of Central South University of Forestry & Technology, 2012, 32(10): 116−120.(in Chinese)
    [19] 韩忠明, 王云贺, 林红梅, 等. 吉林不同生境防风夏季光合特性 [J]. 生态学报, 2014, 34(17):4874−4881.

    HAN Z M, WANG Y H, LIN H M, et al. Photosynthetic characteristics of Saposhnikovia divaricata in different habitats in summer [J]. Acta Ecologica Sinica, 2014, 34(17): 4874−4881.(in Chinese)
    [20] 张淑勇, 周泽福, 张光灿, 等. 半干旱黄土丘陵区天然次生灌木山桃(Prunus davidiana)与山杏(Prunus sibirica L. )叶片气体交换参数日动态差异 [J]. 生态学报, 2009, 29(1):499−507.

    ZHANG S Y, ZHOU Z F, ZHANG G C, et al. Changes of gas exchange parameters in leaves of natural secondary shrubs Prunus davidiana and Prunus sibirica L. in semi-arid Loess Hilly region [J]. Acta Ecologica Sinica, 2009, 29(1): 499−507.(in Chinese)
    [21] VASTAG E, ORLOVIĆ S, KONÔPKOVÁ A, et al. Magnolia grandiflora L. shows better responses to drought than Magnolia × soulangeana in urban environment [J]. IForest - Biogeosciences and Forestry, 2020, 13(6): 575−583. doi: 10.3832/ifor3596-013
    [22] 万丽娟, 张毅, 程东祥, 等. 苏南地区常见公路绿化树种光合固碳特征研究 [J]. 四川大学学报(自然科学版), 2018, 55(4):881−888.

    WAN L J, ZHANG Y, CHENG D X, et al. The photosynthetic carbon fixation characteristics of common tree species for highway greening in southern Jiangsu [J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(4): 881−888.(in Chinese)
    [23] 董延梅, 章银柯, 郭超, 等. 杭州西湖风景名胜区10种园林树种固碳释氧效益研究 [J]. 西北林学院学报, 2013, 28(4):209−212.

    DONG Y M, ZHANG Y K, GUO C, et al. Carbon fixation and oxygen release capabilities of 10 garden plants in the west lake scenic area in Hangzhou [J]. Journal of Northwest Forestry University, 2013, 28(4): 209−212.(in Chinese)
    [24] 薛海丽, 唐海萍, 李延明, 等. 北京常见绿化植物生态调节服务研究 [J]. 北京师范大学学报(自然科学版), 2018, 54(4):517−524.

    XUE H L, TANG H P, LI Y M, et al. Regulation service of main greening tree species in Beijing [J]. Journal of Beijing Normal University (Natural Science), 2018, 54(4): 517−524.(in Chinese)
    [25] BRÉDA N J J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies [J]. Journal of Experimental Botany, 2003, 54(392): 2403−2417. doi: 10.1093/jxb/erg263
    [26] DRIESEN E, VAN DEN ENDE W, DE PROFT M, et al. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review [J]. Agronomy, 2020, 10(12): 1975. doi: 10.3390/agronomy10121975
    [27] FLEXAS J, MEDRANO H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited [J]. Annals of Botany, 2002, 89(2): 183−189. doi: 10.1093/aob/mcf027
    [28] WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: An overview [J]. Environmental and Experimental Botany, 2007, 61(3): 199−223. doi: 10.1016/j.envexpbot.2007.05.011
    [29] 刘东焕, 赵世伟, 高荣孚, 等. 植物光合作用对高温的响应 [J]. 植物研究, 2002, 22(2):205−212.

    LIU D H, ZHAO S W, GAO R F, et al. Response of plants photosynthesis to higher temperature [J]. Bulletin of Botanical Research, 2002, 22(2): 205−212.(in Chinese)
    [30] 袁静, 钱晰, 潘哲等. 东太湖地区二氧化碳浓度变化特征研究[C]. 合肥: 中国气象学会, 2018: 736-743.
    [31] MCADAM S A M, BRODRIBB T J. Linking turgor with ABA biosynthesis: Implications for stomatal responses to vapor pressure deficit across land plants [J]. Plant Physiology, 2016, 171(3): 2008−2016. doi: 10.1104/pp.16.00380
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  93
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回