• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面增强拉曼光谱法快速检测水产品中恩诺沙星和环丙沙星残留

刘文静 潘葳 林惠真 陈宏炬 严绍德

刘文静,潘葳,林惠真,等. 表面增强拉曼光谱法快速检测水产品中恩诺沙星和环丙沙星残留 [J]. 福建农业学报,2024,39(3):362−368 doi: 10.19303/j.issn.1008-0384.2024.03.014
引用本文: 刘文静,潘葳,林惠真,等. 表面增强拉曼光谱法快速检测水产品中恩诺沙星和环丙沙星残留 [J]. 福建农业学报,2024,39(3):362−368 doi: 10.19303/j.issn.1008-0384.2024.03.014
LIU W J, PAN W, LIN H Z, et al. SERS Detection of Enrofloxacin and Ciprofloxacin Residues in Seafood [J]. Fujian Journal of Agricultural Sciences,2024,39(3):362−368 doi: 10.19303/j.issn.1008-0384.2024.03.014
Citation: LIU W J, PAN W, LIN H Z, et al. SERS Detection of Enrofloxacin and Ciprofloxacin Residues in Seafood [J]. Fujian Journal of Agricultural Sciences,2024,39(3):362−368 doi: 10.19303/j.issn.1008-0384.2024.03.014

表面增强拉曼光谱法快速检测水产品中恩诺沙星和环丙沙星残留

doi: 10.19303/j.issn.1008-0384.2024.03.014
基金项目: 福建省科技计划公益类专项(2021R1022008);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021020) ;福建省农业科学院创新团队建设项目(CXTD2021011-1)
详细信息
    作者简介:

    刘文静( 1982 — ),女,硕士,助理研究员,主要从事农产品质量安全研究,E-mail:411935637@qq.com

    通讯作者:

    潘葳(1970 — ),女,研究员,主要从事农产品质量安全研究,E-mail:870993292@qq.com

  • 中图分类号: TS254.7

SERS Detection of Enrofloxacin and Ciprofloxacin Residues in Seafood

  • 摘要:   目的  建立基于表面增强拉曼光谱(surface-enhanced Raman scattering, SERS)检测水产品中恩诺沙星(enrofloxacin, ENR)和环丙沙星(ciprofloxacin, CIP)残留的方法。  方法  以水产品为研究对象,采用粒径(50±5) nm的银纳米溶胶作为SERS增强试剂,200 g·L−1 NaCl溶液作为萃取试剂,3 min内判读结果,并建立了峰强度与浓度的线性回归方程,考察线性关系和检出限,对该方法进行评价。  结果  ENR和CIP的拉曼光谱特征峰为532、552 、651、737、785 cm−1,其中532 cm−1归属于C-N的弯曲振动;552 cm−1归属于C-N面外弯曲振动;651 cm−1归属于C-N、C-C-F面外弯曲振动和C-C=O面内弯曲振动;737 cm−1归属于苯环上C-H的伸缩振动、C-C=O的面外弯曲振动、C-C-N弯曲振动;785 cm−1归属于C-H、C-N的面外弯曲振动。通过对ENR和CIP的特征峰(737 cm−1)进行定量分析发现拉曼特征峰强度与溶液浓度在10 ~200 ng·mL−1内有良好的线性关系,R2>0.96,加标回收率为78.4%~106.7%,RSD值为2.1%~6.7%,方法检出限为10 μg·kg−1  结论  该方法准确、快速、稳定,可实现ENR和CIP在水产品中的现场快速筛查检测。
  • 图  1  增强试剂纳米金溶胶(A)和纳米银溶胶(B)电镜图

    Figure  1.  Electron microscopic images of gold (A) and silver (B) nanoparticles

    图  2  纳米金溶胶和纳米银溶胶的SERS谱图

    Figure  2.  SERS spectra of gold and silver nanoparticles

    图  3  不同反应时间的ENR的SERS信号变化趋势

    Figure  3.  SERS signals of ENR under various reaction times

    图  4  不同粒径的银纳米溶胶电镜图

    Figure  4.  Electron microscopic images of silver nanoparticles of various sizes

    图  5  不同粒径纳米银溶胶的SERS谱图

    Figure  5.  SERS spectra of silver nanoparticles of various sizes

    图  6  不同萃取溶剂的提取效果对比

    a~e分别为NaOH溶液、石油醚溶液、二氯甲烷溶液、NaCl溶液和乙腈标准溶液。

    Figure  6.  Extractions by different solvents

    a–e are NaOH solution, petroleum ether, dichloromethane, NaCl solution, acetonitrile standard solution, respectively.

    表  1  ENR和CIP不同提取液中的线性关系

    Table  1.   Linear relationships on different ENR and CIP extracts

    样本
    Sample
    ENR CIP
    R2 回归方程
    Regression equation
    R2 回归方程
    Regression equation
    草鱼
    Ctenopharyngodon idella
    0.964 6 y=193.74x+170.08 0.988 3 y=186.51x+182.51
    南美白对虾
    Litopenaeus Vannamei
    0.972 4 y=187.25x+200.45 0.976 4 y=188.51x+212.43
    中华绒螯蟹
    Eriocheir Sinensis
    0.981 5 y=215.69x+121.55 0.971 2 y=209.23x+126.98
    下载: 导出CSV

    表  2  样品中ENR和CIP的加标回收率(n=5)

    Table  2.   Recovery rates of ENR and CIP in samples(n=5)

    样本
    Sample
    ENR CIP
    加标
    Add/(μg·kg−1
    结果
    Results/(μg·kg−1
    回收率
    Recovery/%
    RSD
    (n=5)/%
    加标
    Add/(μg·kg−1
    结果
    Results/(μg·kg−1
    回收率
    Recovery/%
    RSD
    (n=5)/%
    草鱼
    Ctenopharyngodon idella
    0 ND 0 ND
    10 9.71 97.1 3.5 10 9.32 93.2 3.2
    20 17.23 86.2 2.9 20 17.22 86.1 5.8
    50 46.54 93.1 4.9 50 45.69 91.4 6.4
    南美白对虾
    Litopenaeus Vannamei
    0 ND 0 ND
    10 8.42 84.2 6.7 10 9.65 96.5 2.4
    20 16.52 82.6 5.1 20 21.34 106.7 3.9
    50 48.35 96.7 3.2 50 44.25 88.5 5.7
    中华绒螯蟹
    Eriocheir Sinensis
    0 ND 0 ND
    10 10.12 101.2 5.8 10 9.95 99.5 6.5
    20 15.67 78.4 4.3 20 16.34 81.7 3.4
    50 47.33 94.7 2.1 50 45.35 90.7 4.9
    "ND"表示未检出,低于该方法的检出限;“—”表示未检出物质对应的无加标回收率和RSD值。
    ND: Undetected due to assay detection limit; —: lack of spiked recovery and RSD of undetected material.
    下载: 导出CSV
  • [1] LÓPEZ-CADENAS C, SIERRA-VEGA M, GARCÍA-VIEITEZ J J, et al. Enrofloxacin: Pharmacokinetics and metabolism in domestic animal species [J]. Current Drug Metabolism, 2013, 14(10): 1042−1058. doi: 10.2174/1389200214666131118234935
    [2] 罗贤静丽. 超高效液相色谱-串联质谱法测定鱼肉组织中的恩诺沙星、环丙沙星和沙拉沙星残留量 [J]. 现代食品, 2020, (7):170−171,179.

    LUO X J L. Determination of enrofloxacin, ciprofloxacin and sarafloxacin in fish tissue by UPLC-MS/MS [J]. Modern Food, 2020(7): 170−171,179. (in Chinese)
    [3] BADAWY S, YANG Y Q, LIU Y N, et al. Toxicity induced by ciprofloxacin and enrofloxacin: Oxidative stress and metabolism [J]. Critical Reviews in Toxicology, 2021, 51(9): 754−787. doi: 10.1080/10408444.2021.2024496
    [4] MA R R, HUANG L, WEI W J, et al. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in Pacific white shrimp Litopenaeus vannamei after multiple-dose oral administration [J]. Fisheries Science, 2018, 84(5): 869−876. doi: 10.1007/s12562-018-1229-y
    [5] 李倩, 王甲, 张玉洁, 等. 动物性食品中喹诺酮类药物残留检测方法研究进展 [J]. 食品安全质量检测学报, 2021, 12(8):3016−3022.

    LI Q, WANG J, ZHANG Y J, et al. Research progress on determination methods of quinolone residues in animal food [J]. Journal of Food Safety & Quality, 2021, 12(8): 3016−3022. (in Chinese)
    [6] TROUCHON T, LEFEBVRE S. A review of enrofloxacin for veterinary use [J]. Open Journal of Veterinary Medicine, 2016, 6(2): 40−58. doi: 10.4236/ojvm.2016.62006
    [7] 张秀媛, 何扩, 黄智鸿, 等. 恩诺沙星抗体免疫检测及其分子识别机制研究 [J]. 现代食品科技, 2015, 31(6):284−289.

    ZHANG X Y, HE K, HUANG Z H, et al. Immunodetection and molecular recognition mechanism of antibodies against enrofloxacin [J]. Modern Food Science and Technology, 2015, 31(6): 284−289. (in Chinese)
    [8] 李继昌, 鲁成武, 符春燕, 等. 氟喹诺酮类药物在禽病防治上的应用 [J]. 黑龙江畜牧兽医, 1998, (10):27.

    LI J C, LU C W, FU C Y, et al. Application of fluoroquinolones in prevention and treatment of poultry diseases [J]. Heilongjiang Animal Science and Veterinary Medicine, 1998(10): 27. (in Chinese)
    [9] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征 [J]. 生态环境学报, 2013, 22(2):304−310. doi: 10.3969/j.issn.1674-5906.2013.02.022

    LIANG X M, SHI Z, HUANG X P. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary [J]. Ecology and Environmental Sciences, 2013, 22(2): 304−310. (in Chinese) doi: 10.3969/j.issn.1674-5906.2013.02.022
    [10] DALLA BONA M, ZOUNKOVÁ R, MERLANTI R, et al. Effects of enrofloxacin, ciprofloxacin, and trimethoprim on two generations of Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2015, 113: 152−158. doi: 10.1016/j.ecoenv.2014.11.018
    [11] 中华人民共和国农业农村部. 食品安全国家标准 食品中兽药最大残留限量GB 31650-2019[S]. 北京: 中国农业出版社, 2020.
    [12] CHAKRAVARTHY V A, SAILAJA B B V, KUMAR A P. Stability-indicating RP-HPLC method for simultaneous estimation of enrofloxacin and its degradation products in tablet dosage forms [J]. Journal of Analytical Methods in Chemistry, 2015, 2015: 735145.
    [13] TIAN H Z. Determination of chloramphenicol, enrofloxacin and 29 pesticides residues in bovine milk by liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2011, 83(3): 349−355. doi: 10.1016/j.chemosphere.2010.12.016
    [14] 苏晓晴, 张李琦, 郑明学, 等. 紫外分光光度法测定恩诺沙星微囊含量方法的建立 [J]. 山西农业大学学报(自然科学版), 2017, 37(4):258−262.

    SU X Q, ZHANG L Q, ZHENG M X, et al. Determination of enrofloxacin gelatin microcapsules content by UV spectrophotometry [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(4): 258−262. (in Chinese)
    [15] LEI X L, XU X X, LIU L Q, et al. Immunochromatographic assays for ultrasensitive and high specific determination of enrofloxacin in milk, eggs, honey, and chicken meat [J]. Journal of Dairy Science, 2022, 105(3): 1999−2010. doi: 10.3168/jds.2021-20276
    [16] 杨熠, 孟坤杰, 赵红琼, 等. 酶联免疫吸附法检测动物源性食品中恩诺沙星残留量 [J]. 食品科学, 2017, 38(8):239−243.

    YANG Y, MENG K J, ZHAO H Q, et al. ELISA determination of enrofloxacin [J]. Food Science, 2017, 38(8): 239−243. (in Chinese)
    [17] PANZENHAGEN P H N, AGUIAR W S, GOUVÊA R, et al. Investigation of enrofloxacin residues in broiler tissues using ELISA and LC-MS/MS[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2016, 33(4): 639-643.
    [18] ZHANG Z Z, LIU Q, ZHANG M, et al. Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor [J]. Journal of Hazardous Materials, 2021, 416: 125988. doi: 10.1016/j.jhazmat.2021.125988
    [19] NILGHAZ A, MAHDI MOUSAVI S, AMIRI A, et al. Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis [J]. Journal of Agricultural and Food Chemistry, 2022, 70(18): 5463−5476. doi: 10.1021/acs.jafc.2c00089
    [20] 李晨, 赵超敏, 古淑青, 等. 水产品中孔雀石绿和结晶紫残留的拉曼光谱法快速检测 [J]. 现代食品科技, 2022, 38(3):286−292,298.

    LI C, ZHAO C M, GU S Q, et al. Rapid determination of malachite green and crystal violet residues in aquatic products by Raman spectroscopy [J]. Modern Food Science and Technology, 2022, 38(3): 286−292,298. (in Chinese)
    [21] 马海宽, 韩晓红, 张财华, 等. 鱼肉中磺胺类抗生素的表面增强拉曼光谱探测与分析 [J]. 激光生物学报, 2014, 23(6):560−565. doi: 10.3969/j.issn.1007-7146.2014.06.009

    MA H K, HAN X H, ZHANG C H, et al. The study of sulfonamide antibiotics in fish based on surface-enhanced Raman spectroscopy technology [J]. Acta Laser Biology Sinica, 2014, 23(6): 560−565. (in Chinese) doi: 10.3969/j.issn.1007-7146.2014.06.009
    [22] 李静, 余婉松, 夏苏捷, 等. 基于表面增强拉曼光谱的养殖水中硝基呋喃类抗生素残留检测 [J]. 食品工业科技, 2019, 40(24):225−230,236.

    LI J, YU W S, XIA S J, et al. Detection of nitrofuran antibiotics residues in fishery water by surface-enhanced Raman spectroscopy [J]. Science and Technology of Food Industry, 2019, 40(24): 225−230,236. (in Chinese)
    [23] 宋洪艳, 赵航, 严霞, 等. 基于表面增强拉曼光谱技术的海洋污染物多氯联苯吸附特性分析 [J]. 光谱学与光谱分析, 2022, 42(3):704−712.

    SONG H Y, ZHAO H, YAN X, et al. Adsorption characteristics of marine contaminant polychlorinated biphenyls based on surface-enhanced Raman spectroscopy [J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 704−712. (in Chinese)
    [24] 孙琳, 张涵, 杜一平. 基于SBA-15的表面增强拉曼基底的制备及对鸡肉和鸡饲料中恩诺沙星的检测 [J]. 高等学校化学学报, 2018, 39(3):455−462. doi: 10.7503/cjcu20170328

    SUN L, ZHANG H, DU Y P. Preparation of surface enhanced Raman scattering substrates based on SBA-15 material and the detection of enrofloxacin in chicken and chicken feed [J]. Chemical Journal of Chinese Universities, 2018, 39(3): 455−462. (in Chinese) doi: 10.7503/cjcu20170328
    [25] FRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature Physical Science, 1973, 241(105): 20−22. doi: 10.1038/physci241020a0
    [26] YU W W, WHITE I M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection [J]. The Analyst, 2012, 137(5): 1168−1173. doi: 10.1039/c2an15947c
    [27] 朱圣清, 杨芳. 基于Drude-Lorentz模型的金银纳米颗粒光谱特征研究 [J]. 江苏理工学院学报, 2022, 28(4):9−16.

    ZHU S Q, YANG F. Research on the spectral characteristics of gold and silver nanoparticles based on Drude-Lorentz model [J]. Journal of Jiangsu University of Technology, 2022, 28(4): 9−16. (in Chinese)
    [28] 郑红. 基于表面增强拉曼光谱技术的环境水样中痕量磺胺类和喹诺酮类抗生素的检测研究[D]. 厦门: 厦门大学, 2019.

    ZHENG H. Study on the detection of trace sulfonamides and quinolones in environment water samples by surface-enhanced Raman spectroscopy[D]. Xiamen: Xiamen University, 2019. (in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  97
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 修回日期:  2023-12-07
  • 网络出版日期:  2024-03-28
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回