• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松嫩平原盐碱土区不同土地利用方式对土壤碳、氮及酶活性的影响

刘骞 郭博雅 伍秀瑜 王悦

刘骞,郭博雅,伍秀瑜,等. 松嫩平原盐碱土区不同土地利用方式对土壤碳、氮及酶活性的影响 [J]. 福建农业学报,2021,36(7):1−9
引用本文: 刘骞,郭博雅,伍秀瑜,等. 松嫩平原盐碱土区不同土地利用方式对土壤碳、氮及酶活性的影响 [J]. 福建农业学报,2021,36(7):1−9
LIU Q, , , et al. Carbon, Nitrogen, and Enzyme Activities in Saline-alkali Soil on Songnen Plain as Affected by Land Uses [J]. Fujian Journal of Agricultural Sciences,2021,36(7):1−9
Citation: LIU Q, , , et al. Carbon, Nitrogen, and Enzyme Activities in Saline-alkali Soil on Songnen Plain as Affected by Land Uses [J]. Fujian Journal of Agricultural Sciences,2021,36(7):1−9

松嫩平原盐碱土区不同土地利用方式对土壤碳、氮及酶活性的影响

基金项目: 长春大学科研培育基金(2019JBC27L40)
详细信息
    作者简介:

    刘骞(1982−),女,博士研究生,讲师,研究方向:土壤养分资源利用(E-mail:hamiqi.365@163.com

  • 中图分类号: S 154.1; X 144

Carbon, Nitrogen, and Enzyme Activities in Saline-alkali Soil on Songnen Plain as Affected by Land Uses

  • 摘要:   目的  探究不同土地利用方式对盐碱地土壤肥力及微生物活性的影响,旨在为盐碱地改良及生态修复提供科学依据。  方法  以吉林西部松嫩平原为例,分析农耕水田(N1)、农耕旱田(N2)、湿地(S)、盐碱荒草地(C)等4种土地利用方式土壤中有机碳、全氮、蔗糖酶、脲酶、碱性磷酸酶、过氧化氢酶的变化特征及相互关系。  结果  不同土地利用方式的土壤有机碳含量为N1:9.70~16.27 g·kg−1、N2:3.85~11.58 g·kg−1、S:2.14~2.97 g·kg−1、C:5.25~11.24 g·kg−1,全氮含量为N1:1.83~2.32 g·kg−1、N2:0.45~0.76 g·kg−1、S:0.34~1.28 g·kg−1、C:0.88~2.04 g·kg−1。不同土地利用方式的土壤酶活性均表现为脲酶>碱性磷酸酶>过氧化氢酶>蔗糖酶,并呈现出伴随土层加深土壤酶活性逐渐降低的趋势。相关分析结果表明,土壤蔗糖酶与碳氮比呈显著相关(P<0.05),脲酶与碳氮比呈极显著相关(P<0.01),碱性磷酸酶与有机碳呈极显著相关(P<0.01)、与全氮呈显著相关(P<0.05),过氧化氢酶与全氮呈极显著相关(P<0.01)、与碳氮比呈显著相关(P<0.05)。冗余分析结果表明,土壤蔗糖酶、脲酶主要受土壤pH值和容重调控,土壤碱性磷酸酶、过氧化氢酶主要受土壤含水量和电导率调控。  结论  土壤有机碳、全氮含量及酶活性在不同土地利用方式间具有较明显的差异,在垂直土层上呈现表层土壤高于深层土壤的规律性分布;农田土地利用方式的土壤有机物质累积量和肥力优于湿地和草地,证明农耕在一定程度上可改善盐碱土壤的肥力及微生物活性,有利于生态环境的改善和修复。
  • 图  1  不同土地利用方式土壤蔗糖酶的垂直分布

    Figure  1.  Vertical distribution of sucrase in soils of varied land uses

    图  2  不同土地利用方式土壤脲酶的垂直分布

    注:(1)N1为农耕水田、N2为农耕旱田、C为草地、S为湿地;(2)图中括号外的小字母代表同一土地利用方式不同土层各指标在0.05水平上的差异显著性,括号内的小字母代表同一土层不同土地利用方式各指标在0.05水平上的差异显著性(图34同)。

    Figure  2.  Vertical distribution of urease in soils of varied land uses

    Note: (1) N1 is farming paddy field; N2, farming dry land; C, grassland; S, wetland; (2) Data with lowercase letters outside brackets represent significant difference at 0.05 level on index under same land use at different soil layers; those within brackets represent significant difference at 0.05 level under different land use at same soil layer. Same for Figs. 3&4.

    图  3  不同土地利用方式土壤碱性磷酸酶的垂直分布

    Figure  3.  Vertical distribution of alkaline phosphatase in soil of varied land uses

    图  4  不同土地利用方式土壤过氧化氢酶的垂直分布

    Figure  4.  Vertical distribution of catalase in soil of varied land uses

    图  5  环境因子与土壤碳、氮及酶活性冗余分析

    注:SOC:有机碳,TN:全氮,C/N:碳氮比,SUC:蔗糖酶,URE:脲酶,ALP:碱性磷酸酶,CAT:过氧化氢酶。pH:pH值,SWC:鲜土含水率,SBD:容重,EC:电导率,ESP:碱化度。

    Figure  5.  Redundancy analysis results on environmental factors, soil enzyme activities, carbon, and nitrogen

    Note: SOC: organic carbon; TN: total nitrogen; C/N: ratio of organic carbon to total nitrogen; SUC: sucrase; URE: urease; ALP: alkaline phosphatase; CAT: catalase; pH: soil pH; SWC: soil water content; SBD: soil bulk density; EC: electric conductivity; ESP: exchangeable sodium percentage.

    表  1  样地基本信息

    Table  1.   Relevant information on sampled lands

    土地利用方式
    Land use
    type
    经度
    Longitude
    纬度
    Latitude
    pH鲜土含水率
    Water
    content/%
    容重
    Bulk density/
    (g·cm−3
    电导率
    Conductivity/
    (ms·cm−1
    碱化度
    exchangeable sodium
    percentage/%
    主要植被
    Main
    vegetation
    农耕水田(N1 E124°54′50″ N45°18′26″ 8.29 50 0.83 0.21 7.11 水稻 rice
    农耕旱田(N2 E124°18′70″ N45°48′22″ 8.56 43 1.02 0.20 7.23 玉米 corn
    湿地(S) E124°48′45″ N45°14′38″ 7.88 55 0.46 0.25 7.02 芦苇 reed
    草地(C) E124°42′33″ N45°11′16″ 8.98 39 1.53 0.16 8.56 碱蓬 Suaeda glauca Bge
    下载: 导出CSV

    表  2  不同土地利用方式土壤碳、氮垂直分布特征

    Table  2.   Vertical distribution of carbon and nitrogen in soils of varied land uses

    土地利用方式
    and use type
    土层
    siol layer/cm
    有机碳 SOC/(g·kg−1全氮 TN/(g·kg−1碳氮比 C/N
    农耕水田(N1 0~10 16.27±0.31 a(a) 2.32±0.05 a(a) 7.01±0.27a(a)
    10~20 15.38±0.56 b(a) 2.16±0.02 ab(a) 7.11±0.31a(a)
    20~30 11.70±0.38 c(a) 2.11±0.04 b(a) 5.55±0.10 b(a)
    30~40 10.53±0.34 d(a) 1.95±0.05 b(a) 5.39±0.06 b(a)
    40~50 9.70±0.15 e(a) 1.83±0.06 b(a) 2.29±0.20 c(a)
    农耕旱田(N2 0~10 11.58±0.23 a(b) 0.76±0.04 a(b) 15.28±1.11 a(b)
    10~20 7.61±0.39 b(b) 0.72±0.02 a(b) 10.58±0.73 b(b)
    20~30 6.84±0.03 c(b) 0.61±0.02 b(b) 11.22±0.35 b(b)
    30~40 6.44±0.12 c(b) 0.52±0.03 c(b) 12.43±0.95 c(b)
    40~50 3.85±0.09 e(b) 0.45±0.10 c(b) 8.89±1.80 d(b)
    湿地(S) 0~10 2.97±0.25 a(c) 1.28±0.07a(c) 2.32±0.29 cd(c)
    10~20 2.25±0.87 b(c) 1.11±0.11a(c) 2.00±0.70 d(c)
    20~30 2.69±0.19 ab(c) 1.03±0.05 ab(c) 2.62±0.08 c(c)
    30~40 2.30±0.09 b(c) 0.74±0.08 b(b) 3.13±0.24 b(c)
    40~50 2.14±0.10 b(c) 0.34±0.08 c(b) 6.42±1.14 a(c)
    草地(C) 0~10 11.24±0.07a(b) 2.04±0.07a(a) 5.51±0.29ab(d)
    10~20 10.11±0.29 b(d) 1.95±0.07a(a) 5.20±0.29 b(d)
    20~30 7.68±0.18 c(d) 1.83±0.13 a(a) 4.20±0.40 d(c)
    30~40 6.63±0.18 d(b) 1.25±0.01 b(c) 4.30±0.10 c(d)
    40~50 5.25±0.16 e(d) 0.88±0.04 c(c) 5.97±0.22 a(c)
    注:括号外的小字母代表同一土地利用方式不同土层各指标在0.05水平上的差异显著性,括号内的小写字母代表同一土层不同土地利用方式各指标在0.05水平上的差异显著性。
    Note: The lowercase letters outside brackets in the figure represent the significance of the difference at the 0.05 level of each index under the same land use mode and different soil layers, and the lowercase letters in brackets represent the significance of the difference at the 0.05 level of the indicators under different land use methods and the same soil layer.
    下载: 导出CSV

    表  3  土壤碳、氮及土壤酶活性的相关性分析

    Table  3.   Correlations among carbon, nitrogen, and enzyme activity of soil

    指标 IndexSOCTNC/NSUCUREALPCAT
    SOC 1 0.607* 0.437 0.531 0.552 −0.824** −0.272
    TN 1 −0.443 0.086 −0.276 −0.624* −0.799**
    C/N 1 0.583* 0.960** −0.191 0.620*
    SUC 1 0.771** −0.161 0.416
    URE 1 −0.246 0.588*
    ALP 1 0.528
    CAT 1
    注:(1)*表示显著相关(P<0.05),**表示极显著相关(P<0.01);(2)SOC:有机碳,TN:全氮,C/N:碳氮比,SUC:蔗糖酶,URE:脲酶,ALP:碱性磷酸酶,CAT:过氧化氢酶。
    Note:(1) * indicates significant correlation (P <0.05), and ** significant correlation (P<0.01). (2) SOC: organic carbon; TN: total nitrogen; C/N: ratio of organic carbon to total nitrogen; SUC: sucrase; URE: urease; ALP: alkaline phosphatase; CAT: catalase.
    下载: 导出CSV
  • [1] 潘根兴, 李恋卿, 张旭辉. 土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议 [J]. 南京农业大学学报, 2002, 25(3):100−109.

    PAN G X, LI L Q, ZHANG X H. Perspectives on issues of soil carbon pools and global change—With suggestions for studying organic carbon sequestration in paddy soils of China [J]. Journal of Nanjing Agricultural University, 2002, 25(3): 100−109.(in Chinese)
    [2] 王建伟, 刘少敏, 罗汉东, 等. 不同类型肥料对油茶林地土壤氮库的影响 [J]. 福建农业学报, 2019, 34(5):606−612.

    WANG J W, LIU S M, LUO H D, et al. Effects of fertilizer type on nitrogen in plantation soil and camellia oleifera plant [J]. Fujian Journal of Agricultural Sciences, 2019, 34(5): 606−612.(in Chinese)
    [3] 周际海, 郜茹茹, 魏倩, 等. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异 [J]. 水土保持学报, 2020, 34(1):327−332.

    ZHOU J H, GAO R R, WEI Q, et al. Effects of different land use patternson enzyme activities and nicrobial diversityin upland red soil [J]. Journal of Soil and Water Conservation, 2020, 34(1): 327−332.(in Chinese)
    [4] 李亚娟, 刘静, 徐长林, 等. 不同退化程度对高寒草甸土壤无机氮及脲酶活性的影响 [J]. 草业学报, 2018, 27(10):45−53. doi: 10.11686/cyxb2018098

    LI Y J, LIU J, XU C L, et al. Effects of different grassland degradation levels on inorganic nitrogen and urease activity in alpine meadow soils [J]. Acta Pratica Sinica, 2018, 27(10): 45−53.(in Chinese) doi: 10.11686/cyxb2018098
    [5] 张知晓, 泽桑梓, 户连荣, 等. 土壤脲酶活性调控因素和脲酶活性细菌系统发育研究 [J]. 西部林业科学, 2018, 47(1):65−73.

    ZHANG Z X, ZE S Z, HU L R, et al. Regulatory factors of soil urease activity and phylogenetic analysis of urease bacteria [J]. Journal of West China Forestry Science, 2018, 47(1): 65−73.(in Chinese)
    [6] 蒋永梅, 师尚礼, 田永亮, 等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征 [J]. 水土保持学报, 2017, 31(3):244−249.

    JIANG Y M, SHI S l, TIAN Y l, et al. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degrees of degradation [J]. Journal of Soil and Water Conservation, 2017, 31(3): 244−249.(in Chinese)
    [7] 李冰, 李玉双, 魏建兵, 等. 沈北新区不同土地利用类型土壤磷酸酶活性特征及其影响因素分析 [J]. 生态科学, 2019, 38(4):48−55.

    LI B, LI Y S, WEI J B, et al. Analysis of activity characteristics and influencing factors of soil phosphatase in different types of land in Shenyang North new area [J]. Ecological Science, 2019, 38(4): 48−55.(in Chinese)
    [8] 曹婷婷, 郭振. 土壤酶活性与土壤肥力关系的研究进展 [J]. 农业科学, 2019, 9(6):444−448. doi: 10.12677/HJAS.2019.96066

    CAO T T, GUO Z. Research advance of the relationship between soil enzyme activity and soil fertility in forest land [J]. Hans Journal of Agricultural Sciences, 2019, 9(6): 444−448.(in Chinese) doi: 10.12677/HJAS.2019.96066
    [9] NNY B, CHOTTE J L, PATE E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions [J]. Applied Soil Ecology, 2001, 18(3): 229−238. doi: 10.1016/S0929-1393(01)00159-7
    [10] 赵可夫, 张万钧, 范海, 等. 改良和开发利用盐渍化土壤的生物学措施 [J]. 土壤通报, 2001, 32(Z1):115−119. doi: 10.3321/j.issn:0564-3945.2001.z1.031

    ZHAO K F, ZHANG W J, FAN H, et al. Biological measures for utilization and development of salinized soil [J]. Cheinese Journal of Soil Science, 2001, 32(Z1): 115−119.(in Chinese) doi: 10.3321/j.issn:0564-3945.2001.z1.031
    [11] 孔祥清, 韦建明, 常国伟, 等. 生物炭对盐碱土理化性质及大豆产量的影响 [J]. 大豆科学, 2018, 37(4):647−651.

    KONG X Q, WEI J M, CHANG G W, et al. Effect of biochar on the physical and chemical properties of saline-alkali soil and soybean yield [J]. Soybean Science, 2018, 37(4): 647−651.(in Chinese)
    [12] 程科. 土体有机重构对盐碱地土壤理化特征的影响 [J]. 农业科学, 2018, 8(10):1192−1199. doi: 10.12677/HJAS.2018.810175

    CHEGN K. Effect of organic reconstitution of soil on physical and chemical characteristics of saline soil [J]. Hans Journal of Agricultural Sciences, 2018, 8(10): 1192−1199.(in Chinese) doi: 10.12677/HJAS.2018.810175
    [13] 秦都林, 王双磊, 刘艳慧, 等. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响 [J]. 作物学报, 2017, 43(7):1030−1042. doi: 10.3724/SP.J.1006.2017.01030

    QIN D L, WANG S L, LIU Y H, et al. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2017, 43(7): 1030−1042.(in Chinese) doi: 10.3724/SP.J.1006.2017.01030
    [14] 李娜, 汤洁, 张楠, 等. 冻融作用对水田土壤有机碳和土壤酶活性的影响 [J]. 环境科学与技术, 2015, 38(10):1−6.

    LI N, TANG J, ZHANG N, et al. Soil organic carbon and its relationship with enzyme during freezing-thawing-cyclesin paddy soil [J]. Environmental Science & Technology, 2015, 38(10): 1−6.(in Chinese)
    [15] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 25–96.
    [16] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社1986.
    [17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 106–110.
    [18] 王义祥, 叶菁, 王成己, 等. 不同经营年限对柑橘果园土壤有机碳及其组分的影响 [J]. 生态环境学报, 2014, 23(10):1574−1580. doi: 10.3969/j.issn.1674-5906.2014.10.002

    WANG Y X, YE J, WANG C J, et al. Effect of different cultivation years on soil organic carbon pools in citrus orchards [J]. Ecology and Environmental Sciences, 2014, 23(10): 1574−1580.(in Chinese) doi: 10.3969/j.issn.1674-5906.2014.10.002
    [19] 张晗, 欧阳真程, 赵小敏, 等. 江西省不同农田利用方式对土壤碳、氮和碳氮比的影响 [J]. 环境科学报, 2018, 38(6):2486−2497.

    ZHANG H, OUYANG Z C, ZHAO X M, et al. Effects of different land use types on soil organic carbon, nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi Province [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2486−2497.(in Chinese)
    [20] 张晓东, 李忠, 张峰. 新疆艾比湖地区不同土地利用类型土壤养分及活性有机碳组分研究 [J]. 水土保持研究, 2017, 24(5):55−62.

    ZHANG X D, LI Z, ZHANG F. Variation of soil nutrients and soil active organic carbon under different land use patterns in Aibinur Lake region of Xinjiang [J]. Research of Soil and Water Conservation, 2017, 24(5): 55−62.(in Chinese)
    [21] 魏鸿鹏, 李志刚, 张蕾, 等. 土地利用方式对土壤有机碳与易氧化碳的影响 [J]. 内蒙古民族大学学报(自然科学版), 2017, 32(3):226−232.

    WEI H P, LI Z G, ZHANG L, et al. Effects of land use types on soil organic carbon and readily oxidizable carbon [J]. Journal of Inner Mongolia University for Nationalities(Natural Sciences), 2017, 32(3): 226−232.(in Chinese)
    [22] 王燕, 包翔, 王明玖, 等. 科尔沁沙地不同草地利用方式下土壤粒度和有机碳分布特征 [J]. 水土保持通报, 2019, 39(6):84−89, 97.

    WANG Y, BAO X, WANG M J, et al. Characteristics of soil particle size and organic carbon distribution under different grassland utilization modes in Horqin sandy land [J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 84−89, 97.(in Chinese)
    [23] 李燕, 赵志忠, 吴丹, 等. 海南岛东部地区不同土地利用方式土壤有机碳的分布特征 [J]. 福建农业学报, 2018, 33(8):820−827.

    LI Y, ZHAO Z Z, WU D, et al. Organic carbon distribution in soils of various land-use patterns in Eastern Hainan [J]. Fujian Journal of Agricultural Sciences, 2018, 33(8): 820−827.(in Chinese)
    [24] 刘骞, 汤洁, 王静静, 等. 吉林西部盐碱稻田土壤有机碳及活性组分时空分布特征 [J]. 东北农业大学学报, 2019, 49(9):44−53. doi: 10.3969/j.issn.1005-9369.2019.09.006

    LIU Q, TANG J, WANG J J, et al. Spatial distribution characteristics of soil organic carbon and active components in saline-alkali paddy fields in Western Jilin [J]. Journal of Northeast Agricultural University, 2019, 49(9): 44−53.(in Chinese) doi: 10.3969/j.issn.1005-9369.2019.09.006
    [25] 李新爱, 肖和艾, 吴金水, 等. 喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响 [J]. 应用生态学报, 2006, 17(10):1827−1831. doi: 10.3321/j.issn:1001-9332.2006.10.011

    LI X A, XIAO H A, WU J S, et al. Effects of land use type on soil organic carbon, total nitrogen, and microbial biomass carbon and nitrogen contents in Karst region of South China [J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1827−1831.(in Chinese) doi: 10.3321/j.issn:1001-9332.2006.10.011
    [26] 孙志高, 刘景双, 李新华. 三江平原不同土地利用方式下土壤氮库的变化特征 [J]. 农业系统科学与综合研究, 2008, 24(3):270−274. doi: 10.3969/j.issn.1001-0068.2008.03.004

    SUN Z G, LIU J S, LI X H. Changes of nitrogen storage in soil under different land uses in the Sanjiang Plain [J]. System scienceand Comprehensive in agriculture, 2008, 24(3): 270−274.(in Chinese) doi: 10.3969/j.issn.1001-0068.2008.03.004
    [27] SCHWAGER S J, MIKHAILOVA E A. Estimating variability in soil organic carbon storage using the method of statistical differentials [J]. Soil ence, 2002, 167(3): 194−200.
    [28] ABER J D, DRISCOLL C T. Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests [J]. Global Biogeochemical Cycles, 1997, 11(4): 639−648. doi: 10.1029/97GB01366
    [29] ABER J D, OLLONGER S V, DRISCOLL C T. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition [J]. Ecological Modelling, 1997, 101(1): 61−78. doi: 10.1016/S0304-3800(97)01953-4
    [30] 田飞飞, 纪鸿飞, 王乐云, 等. 施肥类型和水热变化对农田土壤氮素矿化及可溶性有机氮动态变化的影响 [J]. 环境科学, 2018, 39(10):4717−4726.

    TIAN F F, JI H F, WANG L Y, et al. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil [J]. Environmental Science, 2018, 39(10): 4717−4726.(in Chinese)
    [31] MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science, 2008, 321: 684−686. doi: 10.1126/science.1159792
    [32] OGUTU Z A. An investigation of the influence of human disturbance on selected soil nutrients in Narok District, Kenya [J]. Environmental Monitoring and Assessment, 1999, 58(1): 39−60. doi: 10.1023/A:1006083011646
    [33] 宝日玛, 峥嵘, 周梅, 等. 大兴安岭火烧迹地土壤微生物生物量及酶活性研究 [J]. 内蒙古农业大学学报(自然科学版), 2016, 37(4):77−83.

    BAO R M, ZHENG R, ZHOU M, et al. Study on soil microbial biomass and enzyme activities of burned areas in great hinggan mountains. [J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2016, 37(4): 77−83.(in Chinese)
    [34] 王玉琴, 尹亚丽, 李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析 [J]. 生态环境学报, 2019, 28(6):1108−1116.

    WANG Y Q, YIN Y L, LI S X. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees [J]. Ecology and Environment Sciences, 2019, 28(6): 1108−1116.(in Chinese)
    [35] 杨成德, 陈秀蓉, 龙瑞军, 等. 东祁连山高寒草地牧草返青期土壤酶活性特征 [J]. 草地学报, 2010, 18(3):308−313. doi: 10.11733/j.issn.1007-0435.2010.03.001

    YANG C D, CHEN X R, LONG R J, et al. Characteristics of soil enzymatic activity during forage green-up period of alpine grasslands in the Eastern Qilian mountain areas [J]. Acta Agrestia Sinica, 2010, 18(3): 308−313.(in Chinese) doi: 10.11733/j.issn.1007-0435.2010.03.001
    [36] 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化 [J]. 草业学报, 2014, 23(3):8−19. doi: 10.11686/cyxb20140302

    HU L, WANG C T, WANG G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of three rivers, China [J]. Acta Prataculturae Sinica, 2014, 23(3): 8−19.(in Chinese) doi: 10.11686/cyxb20140302
    [37] 潘琇, 王亮, 谢拾冰, 等. 温州稻田耕层土壤机械组成与理化性状的相关研究 [J]. 浙江农业科学, 2009, 1(6):1194−1197. doi: 10.3969/j.issn.0528-9017.2009.06.055

    PAN X, WANG L, XIE S B, et al. A study on the soil mechanical composition and physical and chemical properties of ploughing layer in Wenzhou paddy field [J]. Jouranl of ZheJiang Agricultural Science, 2009, 1(6): 1194−1197.(in Chinese) doi: 10.3969/j.issn.0528-9017.2009.06.055
    [38] 孟庆英, 张春峰, 贾会彬, 等. 不同机械改土方式对白浆土物理特性及酶活性的影响 [J]. 土壤学报, 2016, 53(2):552−559.

    MENG Q Y, ZHANG C F, JIA H B, et al. Effects of mechanical soil amelioration method on physical properties of and enzyme activity in planosol [J]. Acta Pedologica Sinica, 2016, 53(2): 552−559.(in Chinese)
    [39] 乔赵崇, 赵海超, 黄智鸿, 等. 冀北坝上不同土地利用对土壤微生物量碳氮磷及酶活性的影响 [J]. 生态环境学报, 2019, 28(3):498−505.

    QIAO Z C, ZHAO H C, HUANG Z H, et al. Effects of different land uses on soil microbial biomass, carbon, nitrogen, phosphorus and enzyme activities in the plateau of north Hebei [J]. Ecology and Environmental Sciences, 2019, 28(3): 498−505.(in Chinese)
    [40] JORGE, P F, CARMEN, et al. Intra-annual variation in biochemical properties and the biochemical equilibrium of different grassland soils under contrasting management and climate [J]. Biology & Fertility of Soils, 2011, 47(6): 633−645.
    [41] Gianfreda L, Rao MA, Piotrowska A, et al. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution [J]. Science of the Total Environment, 2005, 341(1-3): 265−279. doi: 10.1016/j.scitotenv.2004.10.005
    [42] Batra L, Manna MC. Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions [J]. Arid Soil Research and Rehabilitation, 1997, 11: 295−303. doi: 10.1080/15324989709381481
    [43] Frankenberger WT, Bingham FT. Influence of salinity on s oil enzyme activities [J]. Soil Science Society of America Journal, 1982, 46: 1173−1177. doi: 10.2136/sssaj1982.03615995004600060011x
    [44] 万忠梅, 宋长春. 三江平原小叶章湿地土壤酶活性的季节动态 [J]. 生态环境学报, 2010, 19(5):1215−1220. doi: 10.3969/j.issn.1674-5906.2010.05.040

    WAN Z M, SONG C C. Seasonal dynamics of soil enzyme activity in Xiaoyezhang wetland in Sanjiang plain [J]. Journal of Ecological Environment, 2010, 19(5): 1215−1220.(in Chinese) doi: 10.3969/j.issn.1674-5906.2010.05.040
    [45] 宁川川, 王建武, 蔡昆争, 等. 有机肥对土壤肥力和土壤环境质量的影响研究进展 [J]. 生态环境学报, 2016, 25(1):175−181.

    NING C C, WANG J W, CAI K Z, et al. The effects of organic fertilizers on soil fertility and soil environmental quality: A review [J]. Ecology and Environmental Sciences, 2016, 25(1): 175−181.(in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  165
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-13
  • 修回日期:  2020-05-05
  • 网络出版日期:  2021-07-13

目录

    /

    返回文章
    返回