• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多组学量化松材线虫入侵对寄主马尾松的影响

徐清华 郭芷晴 贾佳宇 苏军

徐清华,郭芷晴,贾佳宇,等. 基于多组学量化松材线虫入侵对寄主马尾松的影响 [J]. 福建农业学报,2024,39(X):1−11
引用本文: 徐清华,郭芷晴,贾佳宇,等. 基于多组学量化松材线虫入侵对寄主马尾松的影响 [J]. 福建农业学报,2024,39(X):1−11
XU Q H, GUO Z Q, JIA J Y, et al. Quantifying the effect of pine wood nematode invasion on host Pinus massoniana based on multi-omics [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11
Citation: XU Q H, GUO Z Q, JIA J Y, et al. Quantifying the effect of pine wood nematode invasion on host Pinus massoniana based on multi-omics [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−11

基于多组学量化松材线虫入侵对寄主马尾松的影响

基金项目: 福建省林业科技项目(LZKG-202205)
详细信息
    作者简介:

    徐清华(1981 — ),女,硕士,高级工程师,主要从事花卉病虫害及林业有害生物防治技术研究,E-mail:qinghua.xu@syngentagroup.cn

    通讯作者:

    苏军(1986 — ),男,博士,副教授,主要从事森林保护研究,E-mail: junsu@fafu.edu.cn

  • 中图分类号:  S763.7

Quantifying the effect of pine wood nematode invasion on host Pinus massoniana based on multi-omics

  • 摘要:   目的  探究松材线虫入侵对寄主马尾松的影响。  方法  以4年生马尾松(Pinus massoniana)为试材,以皮接法接入5 000条松材线虫的马尾松为处理组[PWN(+)组],以接入无菌水的马尾松为对照组[PWN(−)组],基于多组学(表型组学、转录组学、宏基因组学、代谢组学)量化松材线虫入侵马尾松14 d后的变化。  结果  与PWN(−)组相比,PWN(+)组活性氧(ROS)含量和H2O2含量分别显著上升3.2倍和1.7倍(P<0.05);编码应激反应通路的c60547.graph_c0c82953.graph_c0在PWN(+)组中的表达水平显著高于PWN(−)组(P<0.05),萜类生物合成途径通路的c64867.graph_c0c68789.graph_c0及合胞体形成通路的c81022.graph_c0在PWN(+)组中的表达水平显著低于PWN(−)组(P<0.05);PWN(+)组的微生物多样性显著低于PWN(−)组(P<0.05),肉座菌目(Hypocreales)是其体内的优势微生物,在生物信息数据库KEGG的功能注释和丰度信息主要集中在复制修复通路、DNA复制通路(PATH:ko03030)、DNA复制蛋白通路(BR:ko03032);代谢组上、下调的差异代谢物分别有365和351个,PWN(+)组中根皮素、熊去氧胆酸、羧苄青霉素等物质的含量会增加以抵御松材线虫的侵染,差异显著的代谢物显著富集于ABC转运蛋白通路、花生四烯酸代谢通路、类黄酮生物合成通路、甘油磷脂代谢通路。  结论  当松材线虫入侵马尾松时,寄主会启动一系列复杂的防御反应。这些反应并非孤立存在,而是通过多种机制协同作用,共同应对松材线虫的侵染。上述结果有助于从多组学角度阐明松材线虫入侵对马尾松的影响,并为松材线虫病害诱导的森林衰退和寄主植物马尾松之间的相互作用提供基础参考。
  • 图  1  松材线虫接种效果的验证

    以PWN作为阳性对照,以ddH2O作为阴性对照。

    Figure  1.  Validation of PWN inoculation efficiency

    PWN was used as a positive control and ddH2O was used as a negative control.

    图  2  有无接种松材线虫对寄主马尾松ROS(a)和H2O2(b)含量的影响

    不同小写字母代表差异显著(P<0.05)。

    Figure  2.  Effects of PWN inoculation on ROS(a) and H2O2(b) contents in P. massoniana

    Different lowercase letters represent significant difference(P<0.05).

    图  3  松材线虫入侵前后马尾松体内抗性基因的变化

    Figure  3.  Changes of resistance genes in P. massoniana before and after PWNinvasion

    0

    图  4  不同处理条件下马尾松微生物群的多样性和结构功能

    不同处理组微生物群落的多样性Shannon(a)、Simpson(b)、Invsimpson(c)指数差异,不同小写字母代表差异显著(P<0.05);(d)代表样本在目水平上的聚类柱状图;(e)样本微生物在KEGG level3水平上具有显著性差异的功能预测。

    Figure  4.  Diversity and structural function of microflora of P. massoniana under different treatment conditions

    The diversity of microbial communities in different treatment groups was different in Shannon (a), Simpson (b) and Invsimpson (c) indexes, and different lowercase letters represented significant differences (P<0.05) ; (d)which represents the clustering histogram of the samples at the order level; (e) the functional prediction of the microorganisms at the KEGG level3 level.

    图  5  松材线虫入侵前后诱导的马尾松代谢物组成

    (a) 不同处理的OPLS-DA图。X轴:第一主成分的预测主成分得分,Y轴:正交主成分得分,散点形状和颜色表示不同的实验分组;(b)不同处理间差异代谢物筛选火山图。每个点代表一个代谢物,X轴:该组对比各物质的倍数变化,Y轴:t-检验的P-value,散点颜色代表最终的筛选结果,红色、绿色和灰色分别表示显著差异上调的代谢物、显著差异下调的代谢物和非显著差异的代谢物;(c)不同处理的差异代谢物VIP散点图。显示基于VIP值的前20种差异代谢物,X轴:OPLS-DA模型计算的VIP值,颜色代表不同代谢物的表达模式;(d)不同处理的代谢通路分析气泡图。X轴:每条通路的Impact,Y轴:通路名称,气泡颜色表示富集分析的P-value,颜色越红则富集程度越显著,点的大小代表富集到该通路的差异代谢物的个数;(e)关于不同处理的所有差异代谢物的层次聚类分析热图。X轴:不同样本,Y轴:所有组合的差异代谢物,不同位置的色块代表对应位置代谢物的相对表达量。

    Figure  5.  Metabolite composition of P. massoniana induced before and after invasion of pine wood nematode

    (a) OPLS-DA plots for different treatments. X-axis: predicted principal component score of the first principal component, Y-axis: orthogonal principal component score, scatter shape and color indicate different experimental groupings. (b) differential metabolite screening volcano plot between different treatments. Each dot represents a metabolite, X-axis: fold change of each substance in this group, Y-axis: P-value of t-test, scatter color represents the final screening results, red, green and gray represent significantly differentially upregulated metabolites, significantly differentially downregulated metabolites and non-significantly differentially differentiated metabolites. (c) VIP scatter plots of differentially differentiated metabolites under different treatments. The top 20 differential metabolites based on VIP values are displayed, X-axis: VIP values calculated by OPLS-DA model, and the colors represent the expression patterns of different metabolites;(d) X-axis: Impact of each pathway, Y-axis: pathway name, bubble color represents the P-value of enrichment analysis, the redder the color, the more significant enrichment, and the size of the dot represents the number of differential metabolites enriched to the pathway; (e) Hierarchical cluster analysis heat map of all differential metabolites of different treatments. X-axis: different samples, Y-axis: differential metabolites for all combinations, and the color patches at different locations represent the relative expression levels of metabolites at the corresponding locations.

    表  1  特异引物

    Table  1.   Specific primers

    引物名称
    Primer name
    正向引物(5′-3′)
    Forward primer(5′-3′)
    反向引物(5′-3′)
    Reverse primer(5′-3′)
    Internal control AACGTCATTTCTAGCCGCCA TCAGCCCTACAAACCCCTCT
    Bx-cathepsin TTGCATTCTACGGCCAGTCC ACTGACTTTCGATGGCTCCG
    c60547.graph_c0 TAAATTCCAAGTGCCCCGCA ACCGTGATACACATTTCAGA
    c64867.graph_c0 AAATCGTGTGTGTCCCTGCA GGTTGCAATGATAACGGCCC
    c68789.graph_c0 CGCCCGAATCTCTGCACTTA TCGATGGTCTTGGTGATGGC
    c81022.graph_c0 TTGGCTGTACAGATTCCCGT ACCTATGGATGTCTGCTCCA
    c82953.graph_c0 ACTGTTAACCTGGCTCACGG CTACGCAAATTCACCGCCAC
    下载: 导出CSV
  • [1] 田世光, 刘晓. 松材线虫病综合防控技术、存在的问题与防控对策 [J]. 温带林业研究, 2021, 4(3):5−10. doi: 10.3969/j.issn.2096-4900.2021.03.002

    TIAN S G, LIU X. Comprehensive prevention and control techniques, existing problems and countermeasures of Bursaphelenchus xylophilus disease [J]. Journal of Temperate Forestry Research, 2021, 4(3): 5−10. (in Chinese) doi: 10.3969/j.issn.2096-4900.2021.03.002
    [2] 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析 [J]. 林业科学, 2019, 55(9):1−10.

    YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures [J]. Scientia Silvae Sinicae, 2019, 55(9): 1−10. (in Chinese)
    [3] 理永霞, 张星耀. 松材线虫病致病机理研究进展 [J]. 环境昆虫学报, 2018, 40(2):231−241.

    LI Y X, ZHANG X Y. Research advance of pathogenic mechanism of pine wilt disease [J]. Journal of Environmental Entomology, 2018, 40(2): 231−241. (in Chinese)
    [4] ZHAO L L, MOTA M, VIEIRA P, et al. Interspecific communication between pinewood nematode, its insect vector, and associated microbes [J]. Trends in Parasitology, 2014, 30(6): 299−308. doi: 10.1016/j.pt.2014.04.007
    [5] ESPADA M, SILVA A C, EVES VAN DEN AKKER S, et al. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy [J]. Molecular Plant Pathology, 2016, 17(2): 286−295. doi: 10.1111/mpp.12280
    [6] ZHAO L L, ZHANG X X, WEI Y N, et al. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle [J]. Nature Communications, 2016, 7: 12341. doi: 10.1038/ncomms12341
    [7] SHINYA R, MORISAKA H, TAKEUCHI Y, et al. Making headway in understanding pine wilt disease: What do we perceive in the postgenomic era? [J]. Journal of Bioscience and Bioengineering, 2013, 116(1): 1−8. doi: 10.1016/j.jbiosc.2013.01.003
    [8] WEN T Y, WU X Q, HU L J, et al. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine [J]. Molecular Plant Pathology, 2021, 22(11): 1399−1412. doi: 10.1111/mpp.13121
    [9] SAJNAGA E, SKOWRONEK M, KALWASIŃSKA A, et al. Nanopore-sequencing characterization of the gut microbiota of Melolontha melolontha larvae: Contribution to protection against entomopathogenic nematodes? [J]. Pathogens, 2021, 10(4): 396. doi: 10.3390/pathogens10040396
    [10] ZHANG W, ZHAO L L, ZHOU J, et al. Enhancement of oxidative stress contributes to increased pathogenicity of the invasive pine wood nematode [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1767): 20180323. doi: 10.1098/rstb.2018.0323
    [11] 何龙喜, 吴小芹, 俞禄珍, 等. 不同抗性松树与松材线虫互作中H2O2及其氧化酶活性的差异 [J]. 南京林业大学学报(自然科学版), 2010, 34(6):13−17.

    HE L X, WU X Q, YU L Z, et al. The difference of H2O2 and oxidative enzyme in the interaction of different resistance pines and Bursaphelenchus xylophilus [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34(6): 13−17. (in Chinese)
    [12] SANTOS C S, PINHEIRO M, SILVA A I, et al. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening [J]. BMC Genomics, 2012, 13: 599. doi: 10.1186/1471-2164-13-599
    [13] NOMAN M, AHMED T, IJAZ U, et al. Plant-microbiome crosstalk: Dawning from composition and assembly of microbial community to improvement of disease resilience in plants [J]. International Journal of Molecular Sciences, 2021, 22(13): 6852. doi: 10.3390/ijms22136852
    [14] PROENÇA D N, GRASS G, MORAIS P V. Understanding pine wilt disease: Roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode [J]. MicrobiologyOpen, 2017, 6(2): e00415. doi: 10.1002/mbo3.415
    [15] LIU Y R, PONPANDIAN L N, KIM H, et al. Distribution and diversity of bacterial endophytes from four Pinus species and their efficacy as biocontrol agents for devastating pine wood nematodes [J]. Scientific Reports, 2019, 9: 12461. doi: 10.1038/s41598-019-48739-4
    [16] QIN S, XING K, JIANG J H, et al. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic Actinobacteria [J]. Applied Microbiology and Biotechnology, 2011, 89(3): 457−473. doi: 10.1007/s00253-010-2923-6
    [17] 李硕. 转录组和代谢组联合分析油松对松材线虫的早期响应[D]. 沈阳: 沈阳农业大学, 2022.

    LI S. Analysis of early response of Pinus tabulaeformis to Bursaphelenchus xylophilus by transcriptome and metabolome[D]. Shenyang: Shenyang Agricultural University, 2022. (in Chinese)
    [18] 王新荣, 朱孝伟, 胡月清, 等. 松墨天牛携带的松材线虫PCR检测技术 [J]. 林业科学, 2009, 45(7):70−75. doi: 10.3321/j.issn:1001-7488.2009.07.012

    WANG X R, ZHU X W, HU Y Q, et al. A PCR-based method for detecting Bursaphelenchus xylophilus from Monochamus alternatus [J]. Scientia Silvae Sinicae, 2009, 45(7): 70−75. (in Chinese) doi: 10.3321/j.issn:1001-7488.2009.07.012
    [19] 冯士明. 简介松材线虫的分离方法 [J]. 云南林业, 2005, 26(2):29.

    FENG S M. Brief introduction to the separation method of pine wood nematode [J]. Yunnan Forestry, 2005, 26(2): 29. (in Chinese)
    [20] 张治宇, 张克云, 林茂松, 等. 不同松材线虫群体对黑松的致病性测定 [J]. 南京农业大学学报, 2002, 25(2):43−46.

    ZHANG Z Y, ZHANG K Y, LIN M S, et al. Pathogenicity determination of Bursaphelenchus xylophilus isolates to Pine thunbergii [J]. Journal of Nanjing Agricultural University, 2002, 25(2): 43−46. (in Chinese)
    [21] CAI S P, JIA J Y, HE C Y, et al. Multi-omics of pine wood nematode pathogenicity associated with culturable associated microbiota through an artificial assembly approach [J]. Frontiers in Plant Science, 2021, 12: 798539.
    [22] FAN C J, MA J M, GUO Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis) [J]. PLoS One, 2013, 8(2): e56573. doi: 10.1371/journal.pone.0056573
    [23] JIA J Y, CHEN L, YU W J, et al. The novel nematicide chiricanine A suppresses Bursaphelenchus xylophilus pathogenicity in Pinus massoniana by inhibiting Aspergillus and its secondary metabolite, sterigmatocystin [J]. Frontiers in Plant Science, 2023, 14: 1257744. doi: 10.3389/fpls.2023.1257744
    [24] 贾燕涛. 植物抗病信号转导途径 [J]. 植物学通报, 2003, 38(5):602−608.

    JIA Y T. Plant disease resistance signaling pathways [J]. Chinese Bulletin of Botany, 2003, 38(5): 602−608. (in Chinese)
    [25] BORDEN S, HIGGINS V J. Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum [J]. Physiological and Molecular Plant Pathology, 2002, 61(4): 227−236. doi: 10.1006/pmpp.2002.0435
    [26] 俞禄珍, 吴小芹, 叶建仁, 等. H2O2在黑松-松材线虫早期互作应答中的调控作用 [J]. 中国科学: 生命科学, 2013, 43(4):351−360. doi: 10.1360/052012-274

    YU L Z, WU X Q, YE J R, et al. The role of hydrogen peroxide during the early interactions between Pinus thunbergii and Bursaphelenchus xylophilus [J]. Scientia Sinica (Vitae), 2013, 43(4): 351−360. (in Chinese) doi: 10.1360/052012-274
    [27] 胡龙娇, 吴小芹. 松树抗松材线虫病机制研究进展 [J]. 生命科学, 2018, 30(6):659−666.

    HU L J, WU X Q. Research progress on the mechanism of pine response to the infection of Bursaphelenchus xylophilus [J]. Chinese Bulletin of Life Sciences, 2018, 30(6): 659−666. (in Chinese)
    [28] 何龙喜, 吴小芹, 俞禄珍. 不同松树与松材线虫互作中超氧自由基差异与病变的关系 [J]. 南京林业大学学报(自然科学版), 2011, 35(2):25−30.

    HE L X, WU X Q, YU L Z. The relationship between difference of superoxide anion and lesion in the interaction of different varieties of pines and Bursaphelenchus xylophilus [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 35(2): 25−30. (in Chinese)
    [29] 陈玉惠, 叶建仁, 魏初奖, 等. 松材线虫对黑松、湿地松幼苗活性氧代谢的影响 [J]. 南京林业大学学报(自然科学版), 2002, 26(4):19−22.

    CHEN Y H, YE J R, WEI C J, et al. Effects of pine wood nematode infection on metabolism of active oxygen in Japanese black pine and slash pine seedlings [J]. Journal of Nanjing Forestry University, 2002, 26(4): 19−22. (in Chinese)
    [30] LIU Q H, WEI Y C, XU L Y, et al. Transcriptomic profiling reveals differentially expressed genes associated with pine wood nematode resistance in Masson pine (Pinus massoniana lamb. ) [J]. Scientific Reports, 2017, 7: 4693. doi: 10.1038/s41598-017-04944-7
    [31] HAN G, MANNAA M, KIM N, et al. Response of pine rhizosphere microbiota to foliar treatment with resistance-inducing bacteria against pine wilt disease [J]. Microorganisms, 2021, 9(4): 688. doi: 10.3390/microorganisms9040688
    [32] 谢婉凤, 梁光红, 张飞萍. 松材线虫侵染对马尾松基因表达的影响 [J]. 森林与环境学报, 2018, 38(4):481−487.

    XIE W F, LIANG G H, ZHANG F P. Effect of Bursaphelenchus xylophilus infestation to the gene expression of Pinus massoniana [J]. Journal of Forest and Environment, 2018, 38(4): 481−487. (in Chinese)
    [33] VIEIRA L C, DA SILVA D K A, DA SILVA I R, et al. Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area [J]. Ecological Research, 2019, 34(1): 182−192. doi: 10.1111/1440-1703.1061
    [34] TONG R, ZHOU B Z, JIANG L N, et al. The growth of Chinese fir is limited by nitrogen: Evidences from N: P ratio, N or P variability and NuRE based on a regional investigation [J]. Forest Ecology and Management, 2020, 460: 117905. doi: 10.1016/j.foreco.2020.117905
    [35] 温晓健, 巫建军, 李永先, 等. 松材线虫侵染前后马尾松树体内微生物多样性分析 [J]. 林业科学研究, 2022, 35(1):48−58.

    WEN X J, WU J J, LI Y X, et al. Microbial diversity analysis of Pinus massoniana before and after infected by pine wood nematode [J]. Forest Research, 2022, 35(1): 48−58. (in Chinese)
    [36] AL KHOURY C. Can colonization by an endophytic fungus transform a plant into a challenging host for insect herbivores? [J]. Fungal Biology, 2021, 125(12): 1009−1016. doi: 10.1016/j.funbio.2021.08.001
    [37] 朱兆香, 庄文颖. 木霉属研究概况 [J]. 菌物学报, 2014, 33(6):1136−1153.

    ZHU Z X, ZHUANG W Y. Current understanding of the genus Trichoderma (Hypocreales, Ascomycota) [J]. Mycosystema, 2014, 33(6): 1136−1153. (in Chinese)
    [38] AN R B, PARK E J, JEONG G S, et al. Cytoprotective constituent of hoveniae lignum on both hep G2 cells and rat primary hepatocytes [J]. Archives of Pharmacal Research, 2007, 30(6): 674−677. doi: 10.1007/BF02977626
    [39] MARIADOSS A V A, VINAYAGAM R, XU B J, et al. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis [J]. Chemico-Biological Interactions, 2019, 308: 11−19. doi: 10.1016/j.cbi.2019.05.008
    [40] 尤梅桂. 熊去氧胆酸的研究概况 [J]. 药学研究, 2021, 40(3):199−202.

    YOU M G. Overview of research on ursodeoxycholic acid [J]. Journal of Pharmaceutical Research, 2021, 40(3): 199−202. (in Chinese)
    [41] SCOTT R E, ROBSON H G. Synergistic activity of carbenicillin and gentamicin in experimental Pseudomonas bacteremia in neutropenic rats [J]. Antimicrobial Agents and Chemotherapy, 1976, 10(4): 646−651. doi: 10.1128/AAC.10.4.646
    [42] 刘艳青, 赵永芳. ABC转运蛋白结构与转运机制的研究进展 [J]. 生命科学, 2017, 29(3):223−229.

    LIU Y Q, ZHAO Y F. Structure and mechanism of ABC transporter [J]. Chinese Bulletin of Life Sciences, 2017, 29(3): 223−229. (in Chinese)
    [43] 法博涛. 细胞色素蛋白CYP450家族特殊代谢现象的探索[D]. 上海: 上海交通大学, 2015.

    FA B T. Exploration of special metabolic phenomenon in CYP450 family[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [44] 周科, 徐千惠, 霍晓薇, 等. 杨树受溃疡病菌侵染初期的转录组 [J]. 东北林业大学学报, 2019, 47(3):100−106. doi: 10.3969/j.issn.1000-5382.2019.03.019

    ZHOU K, XU Q H, HUO X W, et al. Transcriptome of poplars with early response to Lonsdalea quercina subsp. populi infection [J]. Journal of Northeast Forestry University, 2019, 47(3): 100−106. (in Chinese) doi: 10.3969/j.issn.1000-5382.2019.03.019
    [45] 赵琳儒, 何盼, 李杰, 等. 柴芩宁神颗粒改善失眠大鼠睡眠作用的海马代谢组学研究 [J]. 中国中药杂志, 2022, 47(7):1921−1931.

    ZHAO L R, HE P, LI J, et al. Sleep-improving mechanism of Chaiqin Ningshen Granules in insomnia rats: Based on hippocampal metabonomics [J]. China Journal of Chinese Materia Medica, 2022, 47(7): 1921−1931. (in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-04-01
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回