• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-IP联合质谱分析筛选中华蜜蜂气味受体OR1和OR2的互作蛋白

郭丽娜 申红英 王珏 于点点 张旭凤 郭媛

郭丽娜,申红英,王珏,等. Co-IP联合质谱分析筛选中华蜜蜂气味受体OR1和OR2的互作蛋白 [J]. 福建农业学报,2023,38(12):1−10
引用本文: 郭丽娜,申红英,王珏,等. Co-IP联合质谱分析筛选中华蜜蜂气味受体OR1和OR2的互作蛋白 [J]. 福建农业学报,2023,38(12):1−10
GUO L N, WANG J, YU D D, et al. Screening of Olfactroy Receptor OR1and OR2 Interacting Proteins with Co-IP approach followed by Mass Spectrometry analysis [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1−10
Citation: GUO L N, WANG J, YU D D, et al. Screening of Olfactroy Receptor OR1and OR2 Interacting Proteins with Co-IP approach followed by Mass Spectrometry analysis [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1−10

Co-IP联合质谱分析筛选中华蜜蜂气味受体OR1和OR2的互作蛋白

基金项目: 山西省应用基础研究计划(青年)项目(20210302124360);山西省高校科技创新项目(2021L098);国家现代农业产业技术体系项目(CARS-44-KXJ2)
详细信息
    作者简介:

    郭丽娜(1987 —),女,博士,副教授,主要从事蜜蜂分子生物学研究,E-mail:linaguo@126.com

    通讯作者:

    郭媛(1975 —),女,硕士,研究员,主要从事蜜蜂授粉及蜜蜂生物学研究,E-mail:yysgy3@163.com@163.com

  • 中图分类号: S891

Screening of Olfactroy Receptor OR1and OR2 Interacting Proteins with Co-IP approach followed by Mass Spectrometry analysis

  • 摘要:   目的  中华蜜蜂Apis cerana cerana是我国特有的蜜蜂品种,其髙度灵敏的嗅觉系统能在复杂气味环境中识别群体内化学信号以及区分食物源散发的特异性气味分子,气味受体(Odorant receptors, ORs)在中蜂识别气味分子的行为过程中起到了重要而又关键的作用。本研究通过分析筛选OR1和OR2的互作蛋白,为深入探究OR1和OR2蛋白蜜蜂嗅觉系统中的功能提供理论依据。  方法  通过构建OR1OR2基因的真核表达载体pFastBac-OR1和pFastBac-OR2载体,转染Sf9细胞,提取细胞总蛋白,利用免疫共沉淀(Co-IP)联合质谱分析技术与筛选鉴定与OR1和OR2互作的细胞蛋白,并对这些互作蛋白进行GO功能注释、KEGG信号通路和蛋白互作网络分析。  结果  IP组和IgG组重组蛋白在细胞内得到正确表达,利用Co-IP联合质谱分析技术共筛选到273个与OR1互作的细胞蛋白和204个与OR2互作的细胞蛋白,主要为微管蛋白、热休克蛋白、核糖体蛋白等。进而对这些蛋白进行GO功能富积分析,发现这些蛋白质涉及多种生物学功能,包括RNA剪接、核糖体和能量运输有关。KEGG pathway分析结果表明互作蛋白参与调节了多条细胞内的重要通路包括核糖体、剪接体、RNA转运等与核糖体相关的通路、丙酮酸代谢、硫胺素新陈代谢、脂肪酸生物合成、淀粉和蔗糖代谢、FoxO信号通路、Hedgehog信号通路等。  结论  OR1和OR2可能通过与多种蛋白直接或间接的相互作用调控并影响其嗅觉感受。
  • 图  1  重组表达载体pFastBac1-OR1(A)和pFastBac1-OR2(B)酶切验证

    注:1:质粒DNA;2:BamHI/HindIII酶切片段;M:DNA Marker。

    Figure  1.  The plasmids pFastBac1-OR1 (A) and pFastBac1-OR2 (B) were verified by restriction enzyme digestion

    Note: 1: plasmid DNA; 2: Digested with BamHI/HindIII1; M: DNA Marker.

    图  2  OR1和OR2蛋白的免疫共沉淀验证

    Figure  2.  Validation of Co-IP for OR1 and OR2 protein

    图  3  IP与IgG组免疫共沉淀蛋白质的银染胶图比较

    Figure  3.  Comparison of silvers staining get graphs of Co-IP protein between IP and IgG group

    图  4  IP与IgG组鉴定的蛋白质数量的韦恩图

    Figure  4.  Venn diagram of protein number identified in IP and IgG groups

    图  5  互作蛋白的GO注释(A,B)和KEGG富积分析(C,D)

    Figure  5.  Go annotations (A, B)and KEGG analysis of the distribution of interacting proteins pathways(C, D).

    表  1  蛋白质鉴定信息统计表

    Table  1.   1Statistical of protein identification information

    样本
    Sample
    总谱图数
    Total spectrograms
    鉴定图数
    Matched spectrum
    鉴定肽段数
    peptide
    鉴定蛋白数
    Identified protein
    OR1_Flag79,1372,7341,487565
    OR1_IgG76,0291,153699317
    OR2_Flag75,1602,0551,280481
    OR2_IgG76,0201,212767318
    下载: 导出CSV

    表  2  OR1蛋白相互作用的细胞蛋白列表(部分蛋白)

    Table  2.   List of cellular proteins interacting with OR1 protein (Partial proteins)

    UniProt登录号
    Accession
    蛋白名称
    Description
    长度
    Lengh/aa
    蛋白质分子量
    MW/kDa
    理论等电点
    pI
    分值
    Score
    A0A8B9AYG1Tubulin beta chain 微管蛋白β链44750.14.86230.92
    A0A8B6Z0H7ATP synthase subunit beta51655.15.41150.99
    A0A8B8H9N3Tubulin beta chain 微管蛋白β链44749.94.89137.54
    A0A8B9B4M6Tubulin beta chain 微管蛋白β链455514.86135.05
    A0A8B9B2J4Tubulin alpha chain 微管蛋白α链45050.25.2133.21
    A0A8B6WZM5actin related protein 137641.85.48132.96
    A0A8B6Z7B8Tubulin alpha chain 微管蛋白α链45049.95.14127.76
    A0A8B8GXQ7actin肌动蛋白37641.75.48105.7
    A0A8B6Z7F0elongation factor 1-alpha isoform X1 延伸因子1-α异构体X146150.39.03105.16
    A0A7M6UVC2Uncharacterized protein 未知蛋白64070.35.8282.67
    A0A8B6WZH6heat shock protein cognate 3 precursor 热休克蛋白同源3前体65872.85.4379.69
    A0A8B6WZD4Heat shock protein 83 热休克蛋白8372483.35.0679.38
    A0A8B6YS79Tubulin alpha chain 微管蛋白α链44850.45.4374.64
    A0A8B9AWD0ATP synthase subunit alpha ATP合酶亚单位54759.58.974.6
    A0A7M7GZK8Heat shock protein 83 热休克蛋白8371882.75.0573.46
    A0A7M7GKN6Uncharacterized protein35736.99.3873.41
    A0A8B6WZI3heat shock protein cognate 4 热休克同源蛋白4650715.5870.79
    A0A8B6Z8U0histone H4 组蛋白H410311.411.3669.62
    A0A7M7MSJ5ATP-dependent helicase brm ATP依赖性解旋酶brm2019217.67.1457.85
    A0A8B9B3I360S ribosomal protein L23 60S核糖体蛋白L2314014.810.5855.71
    A0A8B7KRE5SWI/SNF complex subunit SMARCC2 SWI/SNF复合亚基SMARCC21026114.46.0550.7
    A0A7M7LPS540S ribosomal protein S5 40S核糖体蛋白S521624.19.4547.67
    A0A8B7KKF5pre-mRNA-processing-splicing factor 823742778.8844.2
    A0A8B6Z1L060S ribosomal protein L10a 60S核糖体蛋白L10a21724.69.7641.69
    A0A7M7R4Y7Uncharacterized protein 未知蛋白35838.57.0241.56
    A0A7M7IR0740S ribosomal protein S9 40S核糖体蛋白S919322.510.7440.63
    A0A8B6Z285Vesicle-fusing ATPase 囊泡融合ATP酶80088.85.3340.6
    A0A8B6Z28014-3-3 protein zeta isoform X1 14-3-3蛋白zeta异构体X124728.14.8939.95
    A0A7M7GMY714_3_3 domain-containing protein 含有14_3_3结构域的蛋白质25629.14.8939.62
    A0A8B6Z1F626S proteasome regulatory subunit 8 26S蛋白酶体调节亚基840545.78.538.87
    A0A8B7KJ60translation elongation factor 2 isoform X1 平移伸长因子2亚型X184494.56.5236.68
    A0A8B8H899calcium-transporting ATPase sarcoplasmic/
    endoplasmic reticulum type isoform X1
    钙转运ATP酶肌浆/内质网型X1亚型
    1020112.15.5435.55
    A0A7M7TG4540S ribosomal protein S18 40S核糖体蛋白S1818121.19.9635.13
    A0A8B6ZA3026S proteasome regulatory subunit 7 26S蛋白酶体调节亚基743448.46.0734.05
    A0A8B6YVR3RNA helicase RNA解旋酶72882.29.4233.23
    A0A7M7RB98Clathrin heavy chain 网格蛋白重链16781925.9432.91
    A0A7M7R7J9AAA domain-containing protein 含有AAA结构域的蛋白质44049.26.7632.26
    A0A7M7MT55Tubulin alpha chain 微管蛋白α链43248.25.0631.9
    A0A8B9B3X8RNA helicase RNA解旋酶40346.26.2431.23
    A0A8B6YTH0spectrin alpha chain isoform X2 α链异构体X22418278.25.2631.03
    A0A8B6YUN0Calcium/calmodulin-dependent protein kinase 钙调素依赖性蛋白激酶47453.97.8830.31
    A0A7M7R795RNA helicase RNA解旋酶42348.15.4930.17
    A0A7M7L992ras-related protein Rab-5C ras相关蛋白Rab-5C21423.48.1330.16
    A0A8B9B6N2V-type proton ATPase catalytic subunit A v型质子ATP酶催化亚基A61668.35.4329.78
    下载: 导出CSV

    表  3  与OR2蛋白相互作用的细胞蛋白列表(部分蛋白)

    Table  3.   List of cellular proteins interacting with OR2 protein (Partial proteins)

    UniProt登录号
    Accession
    蛋白名称
    Description
    长度
    Lengh/aa
    蛋白质分子量
    MW/kDa
    理论等电点
    pI
    分值
    Score
    A0A8B9AYG1Tubulin beta chain 微管蛋白β链44750.14.86186.38
    A0A8B6Z0H7ATP synthase subunit beta ATP合酶亚单位51655.15.41118.08
    A0A8B6WZM5actin related protein 1 肌动蛋白相关蛋白137641.85.48112.87
    A0A8B6Z7B8Tubulin alpha chain 微管蛋白α链45049.95.14110.42
    A0A8B8H9N3Tubulin beta chain 微管蛋白β链44749.94.89106.87
    A0A8B9B2J4Tubulin alpha chain 微管蛋白α链45050.25.2100.02
    A0A8B8GXQ7Actin 肌动蛋白37641.75.4892.02
    A0A8B6Z7F0elongation factor 1-alpha isoform X1 延伸因子1- α异构体X146150.39.0375.26
    A0A8B6WZD4Heat shock protein 83 热休克蛋白8372483.35.0664.73
    A0A7M7GZK8Heat shock protein 83 热休克蛋白8371882.75.0563.46
    A0A7M6UVC2Uncharacterized protein 未知蛋白64070.35.8260.39
    A0A7M7GKN6Uncharacterized protein 未知蛋白35736.99.3857.52
    A0A8B6WZH6heat shock protein cognate 3 precursor 热休克蛋白同源3前体65872.85.4351.8
    A0A8B6YS79Tubulin alpha chain 微管蛋白α链44850.45.4351.66
    A0A8B6WZI3heat shock protein cognate 4 热休克同源蛋白4650715.5846.41
    A0A8B6Z8U0histone H4 组蛋白H410311.411.3643.62
    A0A7M7MSJ5ATP-dependent helicase brm ATP依赖性解旋酶brm2019217.67.1443.24
    A0A8B9AWD0ATP synthase subunit alpha ATP合酶亚单位54759.58.942.65
    A0A8B9B3I360S ribosomal protein L23 60S核糖体蛋白L2314014.810.5834.65
    A0A7M7IR0740S ribosomal protein S9 40S核糖体蛋白S919322.510.7432.99
    A0A7M7R4Y7Uncharacterized protein 未知蛋白35838.57.0230.64
    A0A8B6Z1F626S proteasome regulatory subunit 8 26S蛋白酶体调节亚基840545.78.529.63
    A0A7M7LPS540S ribosomal protein S5 40S核糖体蛋白S521624.19.4529.41
    A0A8B9B6N2V-type proton ATPase catalytic subunit A V型质子ATP酶催化亚基A61668.35.4328.38
    A0A7M6UPZ640S ribosomal protein S14 isoform X1 40S核糖体蛋白S14亚型X115116.210.4527.66
    A0A8B7KRE5SWI/SNF complex subunit SMARCC2 SWI/SNF复合亚基SMARCC21026114.46.0527.6
    A0A8B6YVR3RNA helicase RNA解旋酶72882.29.4227.19
    A0A7M7RB98Clathrin heavy chain 网格蛋白重链16781925.9425.73
    A0A8B8H899calcium-transporting ATPase sarcoplasmic/
    endoplasmic reticulum type isoform X1
    钙转运ATP酶肌浆/内质网型X1亚型
    1020112.15.5424.84
    A0A7M7IK02RNA helicase RNA解旋酶56364.310.1424.52
    A0A7M7L992ras-related protein Rab-5C ras相关蛋白Rab-5C21423.48.1324.48
    A0A8B6Z1L060S ribosomal protein L10a 60S核糖体蛋白L10a21724.69.7624.42
    A0A8B7KKF5pre-mRNA-processing-splicing factor 8 前信使RNA加工剪接因子823742778.8823.78
    A0A8B6YTH0spectrin alpha chain isoform X2 α链异构体X22418278.25.2623.34
    A0A7M7H2S3Uncharacterized protein 未知蛋白1970227.15.522.78
    A0A8B6YUN0Calcium/calmodulin-dependent protein kinase 钙调素依赖性蛋白激酶47453.97.8822.64
    A0A7M7TG0840S ribosomal protein S23 40S核糖体蛋白S231431610.5622.61
    A0A8B9B2J1ATP-dependent RNA helicase WM6 依赖ATP的RNA解旋酶WM642448.85.9522.47
    A0A7M7TG4540S ribosomal protein S18 40S核糖体蛋白S1818121.19.9622.04
    A0A7M7R7J9AAA domain-containing protein 含有AAA结构域的蛋白质44049.26.7621.88
    A0A8B8HD04putative ATP-dependent RNA helicase me31b44450.67.7421.18
    A0A7M7LKA7Histone H2B 组蛋白H2B12313.710.3921.12
    A0A7M7R836Kinesin-like protein 类驱动蛋白988112.46.1120.87
    A0A7M7LK91Uncharacterized protein 未知蛋白13014.810.0520.81
    A0A8B6Z285Vesicle-fusing ATPase 囊泡融合ATP酶80088.85.3320.56
    下载: 导出CSV
  • [1] GADENNE C, BARROZO R B, ANTON S. Plasticity in insect olfaction: To smell or not to smell? [J]. Annual Review of Entomology, 2016, 61: 317−333. doi: 10.1146/annurev-ento-010715-023523
    [2] CAREY A F, WANG G R, SU C Y, et al. Odorant reception in the malaria mosquito Anopheles gambiae [J]. Nature, 2010, 464(7285): 66−71. doi: 10.1038/nature08834
    [3] MCINTYRE J C, HEGE M M, BERBARI N F. Trafficking of ciliary G protein-coupled receptors [J]. Methods in Cell Biology, 2016, 132: 35−54.
    [4] SATO K, PELLEGRINO M, NAKAGAWA T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels [J]. Nature, 2008, 452(7190): 1002−1006. doi: 10.1038/nature06850
    [5] WICHER D, SCHÄFER R, BAUERNFEIND R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels [J]. Nature, 2008, 452(7190): 1007−1011. doi: 10.1038/nature06861
    [6] MUKUNDA L, MIAZZI F, SARGSYAN V, et al. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors [J]. Frontiers in Cellular Neuroscience, 2016, 10: 28.
    [7] CASSAU S, KRIEGER J. The role of SNMPs in insect olfaction [J]. Cell and Tissue Research, 2021, 383(1): 21−33. doi: 10.1007/s00441-020-03336-0
    [8] FLEISCHER J, PREGITZER P, BREER H, et al. Access to the odor world: Olfactory receptors and their role for signal transduction in insects [J]. Cellular and Molecular Life Sciences, 2018, 75(3): 485−508. doi: 10.1007/s00018-017-2627-5
    [9] STENGL M, FUNK N W. The role of the coreceptor Orco in insect olfactory transduction [J]. Journal of Comparative Physiology A, 2013, 199(11): 897−909. doi: 10.1007/s00359-013-0837-3
    [10] ZHAO H T, GAO P F, ZHANG C X, et al. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana [J]. Journal of Insect Science (Online), 2013, 13: 80.
    [11] GUO L N, ZHAO H T, JIANG Y S. Expressional and functional interactions of two Apis cerana cerana olfactory receptors [J]. PeerJ, 2018, 6: e5005. doi: 10.7717/peerj.5005
    [12] GUO L N, ZHAO H T, XU B, et al. Odorant receptor might be related to sperm DNA integrity in Apis cerana cerana [J]. Animal Reproduction Science, 2018, 193: 33−39. doi: 10.1016/j.anireprosci.2018.03.029
    [13] JIA J L, JIN J P, CHEN Q, et al. Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network [J]. Biological Research, 2020, 53(1): 24. doi: 10.1186/s40659-020-00290-7
    [14] MURRAY B, PENG H, BARBIER-TORRES L, et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression [J]. Hepatology, 2019, 70(6): 2018−2034. doi: 10.1002/hep.30762
    [15] 王燕碧, 赵采芹, 唐宏, 等. 与鸡斑点型锌指结构蛋白互作的细胞蛋白筛选及其功能分析 [J]. 农业生物技术学报, 2022, 30(5):944−956.

    WANG Y B, ZHAO C Q, TANG H, et al. Screening and functional analysis of cellular proteins interacting with chicken(Gallus gallus) speckle-type POZ protein [J]. Journal of Agricultural Biotechnology, 2022, 30(5): 944−956.(in Chinese)
    [16] 赵焕之, 赵其平, 朱顺海, 等. 免疫共沉淀联合质谱技术筛选柔嫩艾美耳球虫钙依赖蛋白激酶3互作蛋白 [J]. 中国动物传染病学报, 2020, 28(5):1−7.

    ZHAO H Z, ZHAO Q P, ZHU S H, et al. Identification of etcdpk 3 interacting proteins by co-immunopre cipitation in combination with mass spectrometry [J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(5): 1−7.(in Chinese)
    [17] 王焌翔, 杨小祯, 何欢, 等. GST-pull Down和免疫共沉淀联合质谱鉴定埃及伊蚊中肠的Cry4Ba和Cry11Aa互作蛋白 [J]. 农业生物技术学报, 2022, 30(9):1797−1809.

    WANG J X, YANG X Z, HE H, et al. Identification of Cry4Ba and Cry11Aa interacting proteins in Aedes aegypti midgut by GST-pull down and co-immunoprecipitation combined with mass spectrometry [J]. Journal of Agricultural Biotechnology, 2022, 30(9): 1797−1809.(in Chinese)
    [18] WU Q S, MEDINA S G, KUSHAWAH G, et al. Translation affects mRNA stability in a codon-dependent manner in human cells [J]. eLife, 2019, 8: e45396. doi: 10.7554/eLife.45396
    [19] DEFORGES J, LOCKER N, SARGUEIL B. mRNAs that specifically interact with eukaryotic ribosomal subunits [J]. Biochimie, 2015, 114: 48−57. doi: 10.1016/j.biochi.2014.12.008
    [20] ACHENBACH J, NIERHAUS K H. The mechanics of ribosomal translocation [J]. Biochimie, 2015, 114: 80−89. doi: 10.1016/j.biochi.2014.12.003
    [21] PENG J, LI Z, YANG Y, et al. Comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis [J]. International Journal of Molecular Sciences, 2018, 19(11): 3525. doi: 10.3390/ijms19113525
    [22] PUIG O, MATTILA J. Understanding Forkhead box class O function: Lessons from Drosophila melanogaster [J]. Antioxidants & Redox Signaling, 2011, 14(4): 635−647.
    [23] DONG Y, CHEN W W, KANG K, et al. FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper [J]. Science China Life Sciences, 2021, 64(1): 133−143. doi: 10.1007/s11427-019-1734-6
    [24] CAI M J, ZHAO W L, JING Y P, et al. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting [J]. Development, 2016, 143(6): 1005−1015.
    [25] MOLAEI M, VANDEHOEF C, KARPAC J. NF-κB shapes metabolic adaptation by attenuating foxo-mediated lipolysis in Drosophila [J]. Developmental Cell, 2019, 49(5): 802−810.e6. doi: 10.1016/j.devcel.2019.04.009
    [26] WICHER D, MIAZZI F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors [J]. Cell and Tissue Research, 2021, 383(1): 7−19. doi: 10.1007/s00441-020-03363-x
    [27] ANVARIAN Z, MYKYTYN K, MUKHOPADHYAY S, et al. Cellular signalling by primary cilia in development, organ function and disease [J]. Nature Reviews Nephrology, 2019, 15(4): 199−219. doi: 10.1038/s41581-019-0116-9
    [28] ZHAO C L, ZHANG Z M, QU X M, et al. Desert hedgehog mediates the proliferation of medaka spermatogonia through Smoothened signaling [J]. Reproduction, 2022, 163(4): 209−218. doi: 10.1530/REP-21-0468
    [29] ZOTTER B, DAGAN O, BRADY J, et al. Gli1 regulates the postnatal acquisition of peripheral nerve architecture [J]. The Journal of Neuroscience, 2022, 42(2): 183−201. doi: 10.1523/JNEUROSCI.3096-20.2021
    [30] SIVAKUMAR S, QI S T, CHENG N Y, et al. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling [J]. Cell Reports, 2022, 38(7): 110395. doi: 10.1016/j.celrep.2022.110395
    [31] FINDAKLY S, DAGGUBATI V, GARCIA G, et al. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway [J]. The Journal of Cell Biology, 2021, 220(1): e202002026. doi: 10.1083/jcb.202002026
    [32] MAURYA D K, BOHM S, ALENIUS M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9386−E9394.
    [33] SANCHEZ G M, ALKHORI L, HATANO E, et al. Hedgehog signaling regulates the ciliary transport of odorant receptors in Drosophila [J]. Cell Reports, 2016, 14(3): 464−470. doi: 10.1016/j.celrep.2015.12.059
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  37
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-09-25
  • 网络出版日期:  2023-12-21

目录

    /

    返回文章
    返回