Research Progress on Tillage Affecting Microbial Residues in Soil
-
摘要: 微生物残体的续埋效应在农田生态系统中对土壤有机碳(SOC)的贡献超过了50%。合理的耕作方式能通过影响土壤微生物群落与团聚体,促进微生物残体在土壤中的积累。因此,研究微生物残体的作用机制,对分析长期高效的农田耕作措施对SOC的固持作用至关重要。本文综述微生物残体对SOC的贡献途径与大小、耕作方式对SOC和微生物残体的影响、耕作方式影响微生物残体的原因,分析耕作方式影响微生物残体调控SOC含量的作用机制,为农田固碳提供依据。Abstract: Microbes remaining in soil after farming contribute over 50% of soil organic carbon (SOC) in the agri-ecosystem. Appropriate tillages benefit the diversity and accumulation of microorganisms as well as the aggregation and properties of soil on farmland. Thus, understanding the ecological process is essential to achieve a long-term, efficient agriculture operation with maximized SOC retention. This article reviews the research progress at home and abroad encompassing the subjects such as, the pathways and contribution to SOC by microbial residues, the direct and indirect impacts of tillage methods on SOC, and the relations between tillage and microbial community in soil.
-
Key words:
- Tillage /
- microbial residues /
- soil organic carbon
-
[1] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论 [J]. 中国科学(地球科学), 2021, 51(5):680−695. doi: 10.1360/SSTe-2020-0213LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestration carbon sequestration [J]. Scientia Sinica (Terrae), 2021, 51(5): 680−695. (in Chinese) doi: 10.1360/SSTe-2020-0213 [2] YANG Y, DOU Y X, WANG B R, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence [J]. Soil Biology and Biochemistry, 2022, 170: 108688. doi: 10.1016/j.soilbio.2022.108688 [3] ZHANG Y, GAO Y, ZHANG Y, et al. Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon [J]. Soil and Tillage Research, 2022, 218: 105307. doi: 10.1016/j.still.2021.105307 [4] ROBERTS P, BOL R, JONES D L. Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling [J]. Soil Biology and Biochemistry, 2007, 39(12): 3081−3092. doi: 10.1016/j.soilbio.2007.07.001 [5] SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of America Journal, 2006, 70(2): 555−569. doi: 10.2136/sssaj2004.0347 [6] 董天浩. 耕作方式与秸秆还田对黑土团聚体组成及有机碳含量的影响[D]. 哈尔滨: 东北农业大学, 2021.DONG T H. Effects of tillage methods and straw returning on aggregate composition and organic carbon content of black soil[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese) [7] ZHENG T T, XIE H T, THOMPSON G L, et al. Shifts in microbial metabolic pathway for soil carbon accumulation along subtropical forest succession [J]. Soil Biology and Biochemistry, 2021, 160: 108335. doi: 10.1016/j.soilbio.2021.108335 [8] LIANG C, KÄSTNER M, JOERGENSEN R G. Microbial necromass on the rise: The growing focus on its role in soil organic matter development [J]. Soil Biology and Biochemistry, 2020, 150: 108000. doi: 10.1016/j.soilbio.2020.108000 [9] LI X X, HUANG J, QU C C, et al. Diverse regulations on the accumulation of fungal and bacterial necromass in cropland soils [J]. Geoderma, 2022, 410: 115675. doi: 10.1016/j.geoderma.2021.115675 [10] WANG B R, HUANG Y M, LI N, et al. Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling [J]. Soil Biology and Biochemistry, 2022, 167: 108607. doi: 10.1016/j.soilbio.2022.108607 [11] KLINK S, KELLER A B, WILD A J, et al. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues [J]. Soil Biology and Biochemistry, 2022, 168: 108634. doi: 10.1016/j.soilbio.2022.108634 [12] YANG Y L, XIE H T, MAO Z, et al. Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands [J]. Soil Biology and Biochemistry, 2022, 167: 108587. doi: 10.1016/j.soilbio.2022.108587 [13] LI T T, ZHANG J Z, WANG X, et al. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass [J]. Applied Soil Ecology, 2022, 176: 104492. doi: 10.1016/j.apsoil.2022.104492 [14] LI N, XU Y Z, HAN X Z, et al. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol [J]. European Journal of Soil Biology, 2015, 67: 51−58. [15] 王俊, 李强, 任禾, 等. 吉林省西部不同耕作模式下秸秆还田土壤团聚体特征 [J]. 植物营养与肥料学报, 2020, 26(4):603−612. doi: 10.11674/zwyf.19280WANG J, LI Q, REN H, et al. Soil aggregate characteristics under different tillage and in situ straw returning methods in western Jilin, China [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 603−612. (in Chinese) doi: 10.11674/zwyf.19280 [16] WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems [J]. Soil Biology and Biochemistry, 2021, 162: 108422. doi: 10.1016/j.soilbio.2021.108422 [17] ZHOU R R, LIU Y, DUNGAIT J A J, et al. Microbial necromass in cropland soils: A global meta-analysis of management effects [J]. Global Change Biology, 2023, 29(7): 1998−2014. doi: 10.1111/gcb.16613 [18] KHAN K S, MACK R, CASTILLO X, et al. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios [J]. Geoderma, 2016, 271: 115−123. doi: 10.1016/j.geoderma.2016.02.019 [19] DAI G H, ZHU S S, CAI Y, et al. Plant-derived lipids play a crucial role in forest soil carbon accumulation [J]. Soil Biology and Biochemistry, 2022, 168: 108645. doi: 10.1016/j.soilbio.2022.108645 [20] 张志毅, 熊桂云, 吴茂前, 等. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响? [J]. 中国生态农业学报(中英文), 2020, 28(3):405−412.ZHANG Z Y, XIONG G Y, WU M Q, et al. Effects of organic fertilization and tillage method on soil aggregates and organic carbon fractions in a wheat-rice system [J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 405−412. (in Chinese) [21] 傅敏, 郝敏敏, 胡恒宇, 等. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应 [J]. 应用生态学报, 2019, 30(9):3183−3194.FU M, HAO M M, HU H Y, et al. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years [J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3183−3194. (in Chinese) [22] 李婧妤, 李倩, 武雪萍, 等. 免耕对农田土壤持水特性和有机碳储量影响的区域差异 [J]. 中国农业科学, 2020, 53(18):3729−3740. doi: 10.3864/j.issn.0578-1752.2020.18.009LI J Y, LI Q, WU X P, et al. Regional variation in the effects of No-till on soil water retention and organic carbon pool [J]. Scientia Agricultura Sinica, 2020, 53(18): 3729−3740. (in Chinese) doi: 10.3864/j.issn.0578-1752.2020.18.009 [23] ASENSO E, HU L, ISSAKA F, et al. Four tillage method assessments on soil organic carbon, total nitrogen, biological activities, andmaize grain yield in Southern China[J]. Food and Energy Security, 2019, 8(4) . DOI: 10.1002/fes3.176. [24] 陆思旭. 不同耕作与施肥对渭北旱塬土壤养分、有机碳和微生物功能多样性的影响[D]. 杨凌: 西北农林科技大学, 2020.LU S X. Effects of Different Tillage and Fertilization Measures on Soil Nutrients, organic Carbon and Microbial Community Functional Diversity in Weibei Highland[D]. Yangling: Northwest A & F University, 2020. [25] 祁泽伟, 刘彩霞, 李娜娜, 等. 耕作方式对晋中玉米田土壤有机碳储量的影响 [J]. 山西农业科学, 2020, 48(2):233−237. doi: 10.3969/j.issn.1002-2481.2020.02.23QI Z W, LIU C X, LI N N, et al. Effects of different tillage methods on soil organic carbon stock in maize fields in Jinzhong [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 233−237. (in Chinese) doi: 10.3969/j.issn.1002-2481.2020.02.23 [26] 张宇, 张海林, 陈继康, 等. 耕作方式对冬小麦田土壤呼吸及各组分贡献的影响 [J]. 中国农业科学, 2009, 42(9):3354−3360. doi: 10.3864/j.issn.0578-1752.2009.09.044ZHANG Y, ZHANG H L, CHEN J K, et al. Tillage effects on soil respiration and contributions of its components in winter wheat field [J]. Scientia Agricultura Sinica, 2009, 42(9): 3354−3360. (in Chinese) doi: 10.3864/j.issn.0578-1752.2009.09.044 [27] 李辉, 张军科, 江长胜, 等. 耕作方式对紫色水稻土有机碳和微生物生物量碳的影响 [J]. 生态学报, 2012, 32(1):247−255. doi: 10.5846/stxb201101210110LI H, ZHANG J K, JIANG C S, et al. Long-term tillage effects on soil organic carbon and microbial biomass carbon ina purple paddy soil [J]. Acta Ecologica Sinica, 2012, 32(1): 247−255. (in Chinese) doi: 10.5846/stxb201101210110 [28] VAN GROENIGEN K J, BLOEM J, BÅÅTH E, et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage [J]. Soil Biology and Biochemistry, 2010, 42(1): 48−55. doi: 10.1016/j.soilbio.2009.09.023 [29] 吕付泽, 杨雅丽, 鲍雪莲, 等. 免耕不同秸秆覆盖量对黑土微生物群落及其残留物的影响 [J]. 应用生态学报, 2023, 34(4):903−912.LV F Z, YANG Y L, BAO X L, et al. Effects of no-tillage and different stover mulching amounts on soil microbial community and microbial resi-due in the Mollisols of China [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 903−912. (in Chinese) [30] 苏淑芳, 于清军, 刘亚军, 等. 秸秆覆盖免耕对土壤氨基糖在团聚体粒级中分布的影响 [J]. 土壤通报, 2017, 48(2):365−371.SU S F, YU Q J, LIU Y J, et al. Effects of No-tillage with stalk mulching on distribution of amino sugars in soil aggregate fractions [J]. Chinese Journal of Soil Science, 2017, 48(2): 365−371. (in Chinese) [31] GUGGENBERGER G, FREY S D, SIX J, et al. Bacterial and fungal cell-wall residues in conventional and No-tillage agroecosystems [J]. Soil Science Society of America Journal, 1999, 63(5): 1188−1198. doi: 10.2136/sssaj1999.6351188x [32] 丁雪丽, 张旭东, 杨学明, 等. 免耕秸秆还田和传统耕作方式下东北黑土氨基糖态碳的积累特征 [J]. 土壤学报, 2012, 49(3):535−543. doi: 10.11766/trxb201012210539DING X L, ZHANG X D, YANG X M, et al. Accumulation of amino sugar carbon affected by tillage in black soil in Northeast China [J]. Acta Pedologica Sinica, 2012, 49(3): 535−543. (in Chinese) doi: 10.11766/trxb201012210539 [33] 丁雪丽, 何红波, 张彬, 等. 无机氮素加入量对玉米秸秆分解过程中棕壤氨基糖含量的影响 [J]. 土壤学报, 2011, 48(3):665−671. doi: 10.11766/trxb201003220099DING X L, HE H B, ZHANG B, et al. Effects of inorganic nitrogen application rate on content of amino sugars in alfisol during microbial decomposition of corn stalks [J]. Acta Pedologica Sinica, 2011, 48(3): 665−671. (in Chinese) doi: 10.11766/trxb201003220099 [34] 陈奇, 丁雪丽, 张彬. 三江平原湿地开垦对土壤氨基糖积累特征的影响 [J]. 应用生态学报, 2021, 32(12):4247−4253.CHEN Q, DING X L, ZHANG B. Effects of wetland reclamation on amino sugar accumulation in soils of the Sanjiang Plain [J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4247−4253. (in Chinese) [35] AMELUNG W. Methods using amino sugars as markers for microbial residues in soil[M]//Assessment Methods for Soil Carbon. CRC Press, 2000: 251-290. [36] 孙冰洁. 不同耕作方式下土壤微生物在黑土有机碳固定中的作用研究[D]. 哈尔滨: 中国科学院研究生院(东北地理与农业生态研究所), 2016.SUN B J. Effects of soil microorganisms on organic carbon sequestration in black soil under different tillage practices[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016. (in Chinese) [37] TREONIS A M, AUSTIN E E, BUYER J S, et al. Effects of organic amendment and tillage on soil microorganisms and microfauna [J]. Applied Soil Ecology, 2010, 46(1): 103−110. doi: 10.1016/j.apsoil.2010.06.017 [38] SAE-TUN O, BODNER G, ROSINGER C, et al. Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities [J]. Applied Soil Ecology, 2022, 179: 104599. doi: 10.1016/j.apsoil.2022.104599 [39] ZHANG B, HE H B, DING X L, et al. Soil microbial community dynamics over a maize (Zea mays L. ) growing season under conventional- and no-tillage practices in a rainfed agroecosystem [J]. Soil and Tillage Research, 2012, 124: 153−160. doi: 10.1016/j.still.2012.05.011 [40] 冯彪, 青格尔, 高聚林, 等. 不同耕作方式对土壤酶活性及微生物量和群落组成关系的影响 [J]. 北方农业学报, 2021, 49(3):64−73. doi: 10.12190/j.issn.2096-1197.2021.03.09FENG B, QING G E, GAO J L, et al. Effects of different tillage methods on soil enzyme activity, microbial biomass and community composition [J]. Journal of Northern Agriculture, 2021, 49(3): 64−73. (in Chinese) doi: 10.12190/j.issn.2096-1197.2021.03.09 [41] SUN B J, JIA S X, ZHANG S X, et al. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity [J]. Environmental Science and Pollution Research, 2016, 23(7): 6472−6482. doi: 10.1007/s11356-015-5812-9 [42] 王雅芝, 齐鹏, 王晓娇, 等. Meta分析中国保护性耕作对土壤微生物多样性的影响 [J]. 草业科学, 2021, 38(2):378−392. doi: 10.11829/j.issn.1001-0629.2020-0302WANG Y Z, QI P, WANG X J, et al. Effect of conservation tillage on soil microbial diversity in China: A Meta-analysis [J]. Pratacultural Science, 2021, 38(2): 378−392. (in Chinese) doi: 10.11829/j.issn.1001-0629.2020-0302 [43] 何婉莹. 保护性耕作对农田黑土生态化学计量特征及微生物多样性的影响[D]. 哈尔滨: 东北农业大学, 2023HE W Y. Effects of conservation tillage on Ecological stoichiometric characteristics and microbial diversity of farmland black soil [D]. Harbin: Northeast Agricultural University, 2023. (in Chinese) [44] 吕开源, 周立萍, 康建宏, 等. 不同耕作方式下玉米秸秆还田对土壤真菌群落的影响 [J]. 中国土壤与肥料, 2022, (8):112−122. doi: 10.11838/sfsc.1673-6257.21315LV K Y, ZHOU L P, KANG J H, et al. Effects of maize straw returning on soil fungal community under different tillage methods [J]. Soil and Fertilizer Sciences in China, 2022(8): 112−122. doi: 10.11838/sfsc.1673-6257.21315 [45] WANG Z T, LIU L, CHEN Q, et al. Conservation tillage increases soil bacterial diversity in the dryland of Northern China [J]. Agronomy for Sustainable Development, 2016, 36(2): 28. doi: 10.1007/s13593-016-0366-x [46] WANG H, WANG S L, WANG R, et al. Conservation tillage increased soil bacterial diversity and improved soil nutrient status on the Loess Plateau in China [J]. Archives of Agronomy and Soil Science, 2020, 66(11): 1509−1519. doi: 10.1080/03650340.2019.1677892 [47] 钟融, 王培如, 孙培杰, 等. 长年耕作对北方旱作麦田土壤细菌群落结构及理化性质的影响 [J]. 环境科学, 2023, 44(10):5800−5812.ZHONG R, WANG P R, SUN P J, et al. Effects of long-term tillage on soil bacterial community structure and physicochemical properties of dryland wheat fields in northern China [J]. Environmental Science, 2023, 44(10): 5800−5812. (in Chinese) [48] ZHU X F, XIE H T, MASTERS M D, et al. Microbial trade-off in soil organic carbon storage in a no-till continuous corn agroecosystem [J]. European Journal of Soil Biology, 2020, 96: 103146. doi: 10.1016/j.ejsobi.2019.103146 [49] LI T T, YUAN Y, MOU Z J, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration [J]. Global Change Biology, 2023, 29(2): 533−546. doi: 10.1111/gcb.16467 [50] 霍琳, 杨思存, 王成宝, 等. 耕作方式对甘肃引黄灌区灌耕灰钙土团聚体分布及稳定性的影响 [J]. 应用生态学报, 2019, 30(10):3463−3472.HUO L, YANG S C, WANG C B, et al. Effects of tillage types on soil aggregate distribution and stability in irrigated sierozem of Gansu Yellow River irrigation area, China [J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3463−3472. (in Chinese) [51] 沈晓琳, 王丽丽, 汪洋, 等. 保护性耕作对土壤团聚体、微生物及线虫群落的影响研究进展 [J]. 农业资源与环境学报, 2020, 37(3):361−370.SHEN X L, WANG L L, WANG Y, et al. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities [J]. Journal of Agricultural Resources and Environment, 2020, 37(3): 361−370. (in Chinese) [52] ALINEJADIAN-BIDABADI A, MALEKI A, ROSHANIYAN M. The impact of tillage systems and crop residues on microbial mass and soil structure stability indices [J]. Spanish Journal of Agricultural Research, 2021, 19(1): e1101. doi: 10.5424/sjar/2021191-15794 [53] LOSS A, PEREIRA M G, GIÁCOMO S G, et al. Aggregation, carbon and nitrogen in soil aggregates under no-tillage with crop-livestock integration [J]. Pesquisa Agropecuária Brasileira, 2011, 46(10): 1269−1276 [54] 王峻, 薛永, 潘剑君, 等. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响 [J]. 水土保持学报, 2018, 32(5):121−127.WANG J, XUE Y, PAN J J, et al. Effects of tillage and straw incorporation on sequestration of organic carbon and crop yields [J]. Journal of Soil and Water Conservation, 2018, 32(5): 121−127. (in Chinese) [55] 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量 [J]. 中国农业科学, 2021, 54(2):334−344. doi: 10.3864/j.issn.0578-1752.2021.02.009LI J, WU H J, WU X P, et al. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334−344. (in Chinese) doi: 10.3864/j.issn.0578-1752.2021.02.009 [56] 王兴, 祁剑英, 井震寰, 等. 长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响 [J]. 农业工程学报, 2019, 35(24):121−128. doi: 10.11975/j.issn.1002-6819.2019.24.015WANG X, QI J Y, JING Z H, et al. Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 121−128. (in Chinese) doi: 10.11975/j.issn.1002-6819.2019.24.015 [57] 张宇, 蒋代华, 黄金兰, 等. 粉垄耕作对赤红壤团聚体粒级分布和稳定性的影响 [J]. 生态学杂志, 2021, 40(12):3922−3932.ZHANG Y, JIANG D H, HUANG J L, et al. Effect of deep vertically rotary tillage on particle size distribution and stability of latosolic reds soil aggregates [J]. Chinese Journal of Ecology, 2021, 40(12): 3922−3932. (in Chinese) [58] SOKOL N W, SLESSAREV E, MARSCHMANN G L, et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry [J]. Nature Reviews Microbiology, 2022, 20: 415−430. doi: 10.1038/s41579-022-00695-z
点击查看大图
计量
- 文章访问数: 188
- HTML全文浏览量: 89
- PDF下载量: 36
- 被引次数: 0