• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉垄耕作与绿肥还田对土壤酶活性和甘蔗产量的影响

周灵芝 黄渝岚 周佳 劳承英 申章佑 李艳英 韦本辉 张宪 王锋 李素平

周灵芝,黄渝岚,周佳,等. 粉垄耕作与绿肥还田对土壤酶活性和甘蔗产量的影响 [J]. 福建农业学报,2024,39(X):1−10
引用本文: 周灵芝,黄渝岚,周佳,等. 粉垄耕作与绿肥还田对土壤酶活性和甘蔗产量的影响 [J]. 福建农业学报,2024,39(X):1−10
ZHOU L Z, HUANG Y L, ZHOU J, et al. Effects of Fenlong tillage and green manure returning on soil enzyme activity and sugarcane yield [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−10
Citation: ZHOU L Z, HUANG Y L, ZHOU J, et al. Effects of Fenlong tillage and green manure returning on soil enzyme activity and sugarcane yield [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−10

粉垄耕作与绿肥还田对土壤酶活性和甘蔗产量的影响

基金项目: 广西科技重大专项(桂科AA20302020-1);广西自然科学基金项目(2022GXNSFAA035518) ;广西农业科学院稳定资助科研团队项目(桂农科 2021YT056)
详细信息
    作者简介:

    周灵芝(1979 —),女,硕士,高级农艺师,主要从事粉垄耕作与栽培技术研究,E-mail:59810551@qq.com

    通讯作者:

    韦本辉(1954 —),男,研究员,主要从事粉垄耕作与栽培技术研究,E-mail:weibenhui@126.com

  • 中图分类号: S142; S341

Effects of Fenlong tillage and green manure returning on soil enzyme activity and sugarcane yield

  • 摘要:   目的  探明不同耕作和绿肥还田方式对长期连作蔗地土壤养分、酶活性和甘蔗产量的影响。  方法  采用随机区组设计,设立4个处理:传统旋耕甘蔗单作(TCK)、粉垄耕作甘蔗单作(FLCK)、粉垄耕作甘蔗/大豆还田甘蔗根部(FLG)和大豆还田宽行(FLK)。测定土壤有机质、速效养分含量和脲酶、蔗糖酶、酸性磷酸酶、过氧化氢酶活性及甘蔗产量品质。  结果  (1)耕作方式和绿肥还田对土壤养分和酶活性显影响著。与TCK相比,所有处理的根部和宽行土壤有机质含量显著提高(P<0.05),增幅40.6%~76.7%。FLG、FLK和FLCK处理根部土壤碱解氮和有效磷含量比TCK显著提高,增幅16.1%~41.8%。(2)所有处理的土壤脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶活性比TCK提高(FLG处理宽行土壤脲酶活性除外)0.7%~166.7%。(3)FLG、FLK和FLCK处理的2年平均产量显著高于TCK,增幅13.1%~30.5%;FLG和FLK处理的2年平均产量显著高于FLCK,增幅9.9%~15.3%;其中以FLG处理平均产量最高,为86 043 kg·hm−2。FLG、FLK和FLCK处理的蔗糖分、锤度、重力纯度、视纯度和转光度均比TCK高。(4)甘蔗产量与土壤脲酶活性显著正相关,与土壤蔗糖酶、酸性磷酸酶、过氧化氢酶活性、有机质、碱解氮和有效磷含量极显著正相关。  结论  利用粉垄耕作结合绿肥还田可以提高连作蔗地土壤养分、土壤酶活性和甘蔗产质量;结合田间操作的便捷性,本地区生产推荐应用粉垄耕作结合绿肥还田到宽行的模式。
  • 图  1  各处理田间设计图

    Figure  1.  Design of field for each treatment

    图  2  不同处理对甘蔗产量性状的影响

    柱子上方的不同小写字母代表处理间差异显著(P<0.05)。

    Figure  2.  Effect of different treatments on sugarcane yield traits

    The different lowercase letters above the column represent significant differences between treatments (P<0.05).

    表  1  不同处理对土壤理化性状的影响

    Table  1.   Effects of different treatments on soil physicochemical properties

    处理
    Treatment
    有机质
    SOM(g·kg−1)
    pH 碱解氮
    AN/(mg·kg−1)
    有效磷
    AP/(mg·kg−1)
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    TCK 18.41±0.63 d 17.36±0.74 d 3.93±0.01 c 4.03±0.01 a 88.02±5.52 e 98.98±6.12 d 51.46±2.30 c 50.56±2.81 c
    FLCK 28.70±1.26 ab 24.40±1.18 c 4.03±0.01 a 4.02±0.01 a 114.00±2.51 c 102.70±0.87 d 59.73±1.61 b 51.88±2.28 c
    FLG 31.24±2.71 a 28.16±1.99 b 3.95±0.07 bc 4.04±0.01 a 124.79±4.86 a 106.44±0.77 d 72.48±0.90 a 50.83±1.49 c
    FLK 29.81±1.67 ab 30.67±1.41 ab 3.92±0.04 c 4.00±0.01 ab 115.67±1.94 bc 122.63±6.44 ab 62.24±1.16 b 71.70±0.65 a
    耕作 Tillage 0.042* 0.127 0.001** 0.000**
    绿肥 Green manure 0.008** 0.55 0.000** 0.000**
    耕作*绿肥 Tillage*green manure 0.078 0.71 0.042* 0.000**
    处理
    Treatment
    速效钾
    AK/(mg·kg−1)
    容重
    BD/(g·cm−3)
    孔隙度
    Porosity/%
    含水量
    Water content/%
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    TCK 92.90±2.10 cd 91.15±3.56 d 1.31±0.03 bc 1.38±0.04 a 50.56±1.30 de 47.92±1.72 f 16.51±0.26 de 14.96±0.03 f
    FLCK 85.76±4.55 e 96.92±0.92 bc 1.24±0.02 de 1.34±0.01 ab 53.21±0.99 bc 49.30±0.43 ef 17.20±0.23 c 15.29±0.33 f
    FLG 99.71±0.92 b 94.89±2.17 cd 1.16±0.03 f 1.26±0.02 cd 56.22±1.13 a 52.45±0.99 cd 18.85±0.25 a 16.24±0.26 e
    FLK 93.79±1.41 cd 111.77±1.51 a 1.13±0.06 f 1.19±0.01 ef 57.23±2.45 a 55.09±0.65 ab 17.87±0.45 b 16.81±0.31 cd
    耕作 Tillage 0.000** 0.005** 0.005** 0.000**
    绿肥 Green manure 0.000** 0.007** 0.007** 0.000**
    耕作*绿肥 Tillage*green manure 0.031* 0.057 0.057 0.657
    同一个指标根部和宽行的2列数据后面不同字母表示处理间差异在0.05水平上显著;*、**分别表示在0.05、0.01水平显著。
    Different lowercase letters in the same testing index indicate significant differences between different treatments at P<0.05 level.* and ** indicate significant differences at P<0.05 level and P<0.01 level
    下载: 导出CSV

    表  2  不同处理对土壤酶活性的影响 (单位:mg·d−1·g−1

    Table  2.   Effects of different treatments on soil enzyme activities

    处理
    Treatment
    脲酶 UE 蔗糖酶 SC 酸性磷酸酶 ACP 过氧化氢酶 CAT
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    根部
    Root region
    宽行
    Wide area
    TCK 1.40±0.00 def 1.39±0.02 ef 2.64±0.12 g 2.59±0.15 g 1.64±0.06 c 1.45±0.07 d 108.70±5.91 f 119.93±5.10 e
    FLCK 1.49±0.02 c 1.46±0.01 cde 3.89±0.24 e 3.45±0.22 f 2.13±0.05 b 1.46±0.01 d 146.47±4.79 bc 124.09±1.44 e
    FLG 1.84±0.02 a 1.34±0.07 f 7.04±0.18 a 4.96±0.19 c 2.76±0.17 a 2.18±0.16 b 158.33±1.05 a 135.74±3.31 d
    FLK 1.47±0.04 cd 1.63±0.04 b 4.39±0.18 d 6.44±0.16 b 2.24±0.10 b 2.26±0.01 b 150.32±2.40 ab 138.52±8.59 cd
    耕作 Tillage 0.000** 0.087 0.000** 0.000**
    绿肥 Green manure 0.000** 0.000** 0.000** 0.005**
    耕作*绿肥 Tillage*green manure 0.011* 0.874 0.961 0.444
    注:同一个指标根部和宽行的2列数据后面不同字母表示处理间差异在0.05水平上显著;*、**分别表示在0.05、0.01水平显著。
    Note: Different lowercase letters in the same testing index indicate significant differences between different treatments at P<0.05 level.* and ** indicate significant differences at P<0.05 level and P<0.01 level
    下载: 导出CSV

    表  3  不同处理对甘蔗品质的影响

    Table  3.   Effects of different treatments on quality of sugarcane

    年份
    Year
    处理
    Treatment
    甘蔗蔗糖分
    Sucrose content
    in cane/%
    纤维分
    Fiber content/%
    锤度
    Brix/(°BX)
    蔗汁蔗糖分
    Sucrose content
    in cane juice/%
    重力纯度
    Gravity purity/%
    还原糖分
    Reducing sugar
    content/%
    视纯度
    Apparent
    purity/%
    转光度
    Pol/%
    2021TCK12.88±0.18 c10.67±0.31 a18.10±0.01 c15.39±0.13 c85.00±0.64 c0.52±0.06 a84.53±0.51 c15.31±0.15 c
    FLCK14.29±0.01 a10.51±0.22 a19.43±0.13 a17.04±0.13 a87.80±0.34 a0.35±0.00 bc87.67±0.04 a17.01±0.01 a
    FLG13.78±0.24 b10.94±0.39 a19.02±0.12 b16.53±0.14 b86.93±1.02 ab0.28±0.10 c86.36±1.25 ab16.42±0.21 b
    FLK13.72±0.04 b10.85±0.20 a18.95±0.05 b16.36±0.05 b86.33±0.71 bc0.43±0.03 ab85.46±0.65 bc16.19±0.04 b
    2022TCK14.03±0.06 b10.54±0.26 b19.28±0.28 b16.54±0.07 b85.81±1.04 b0.36±0.02 b86.44±1.04 c16.66±0.04 b
    FLCK14.92±0.30 a11.46±0.28 a19.80±0.66 ab17.93±0.58 a90.54±0.16 a0.32±0.02 c90.51±0.19 a17.92±0.57 a
    FLG15.22±0.30 a12.03±0.36 a20.24±0.28 a18.37±0.19 a90.79±0.27 a0.33±0.02 bc91.36±0.42 a18.48±0.17 a
    FLK14.83±0.26 a11.54±0.30 a20.10±0.39 ab17.81±0.32 a88.56±0.78 b0.45±0.00 a88.78±0.87 b17.85±0.59 a
    平均 AverageTCK13.46±0.15 c10.61±0.06 c18.69±0.19 b15.97±0.04 c85.41±0.62 c0.44±0.05 a85.49±0.83 c15.99±0.04 c
    FLCK14.61±0.13 a10.99±0.23 b19.62±0.22 a17.49±0.17 a89.17±0.06 a0.34±0.01 b89.09±0.11 a17.47±0.27 a
    FLG14.50±0.15 ab11.49±0.25 a19.63±0.38 a17.45±0.34 a88.86±0.25 a0.31±0.01 b88.86±0.12 a17.45±0.29 a
    FLK14.28±0.06 b11.20±0.05 ab19.53±0.13 a17.09±0.03 b87.45±0.84 b0.44±0.02 a87.12±0.77 b17.02±0.06 b
    同一年份同列数据后面不同小写字母表示处理间差异在0.05水平上显著。
    Different lowercase letters in the same year indicate significant differences between different treatments at P<0.05 level.
    下载: 导出CSV

    表  4  土壤酶活性、理化性状与产量及其构成因素的Pearson相关性分析

    Table  4.   Pearson correlation analysis of soil enzyme activity, physicochemical properties, yield and its components

    项目
    Item
    株高
    Plant
    height
    径茎
    Stem
    diameter
    有效茎数
    Effective
    stem
    产量
    Yield
    脲酶 UE0.143−0.0060.579*0.706*
    蔗糖酶 SC0.2920.0140.649*0.819**
    酸性磷酸酶 ACP0.4260.20.693*0.894**
    过氧化氢酶 CAT0.633*0.0360.753**0.879**
    有机质 SOM0.649*0.1140.596*0.868**
    PH0.358−0.0710.2030.019
    碱解氮 AN0.592*−0.0110.738**0.851**
    有效磷 AP0.350.0860.701*0.870**
    速效钾 AK−0.244−0.0040.1080.493
    容重 BD−0.558−0.179−0.094−0.958*
    孔隙度 Porosity0.5700.1860.1040.962*
    含水量 Water content0.8230.1710.2030.962*
    *、**分别表示在0.05、0.01水平显著。
    * and ** indicate significant differences at P<0.05 level and P<0.01 level.
    下载: 导出CSV
  • [1] 梅景泰. 基于SWOT分析的广西蔗糖产业发展策略研究 [J]. 海峡科技与产业, 2023, 36(3):23−25.

    MEI J T. Research on development strategy of sugar industry in Guangxi based on SWOT analysis [J]. Technology and Industry Across the Straits, 2023, 36(3): 23−25. (in Chinese)
    [2] 耿贵, 杨瑞瑞, 於丽华, 等. 作物连作障碍研究进展 [J]. 中国农学通报, 2019, 35(10):36−42.

    GENG G, YANG R R, YU L H, et al. Crop continuous cropping obstacles: Research progress [J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 36−42. (in Chinese)
    [3] 王小明, 覃逸明, 廖政达, 等. 糖料蔗生产中土壤劣变原因、机制与治理对策综述 [J]. 江苏农业科学, 2018, 46(21):6−11.

    WANG X M, QIN Y M, LIAO Z D, et al. Summary on the causes, mechanisms and control countermeasures of soil deterioration in sugar cane production [J]. Jiangsu Agricultural Sciences, 2018, 46(21): 6−11. (in Chinese)
    [4] 苏利荣. 间作绿豆绿肥压青还田对甘蔗生长及蔗地土壤的影响[D]. 南宁: 广西大学, 2018.

    SU L R. Effect of mung bean intercropping and returning as green manure on sugarcane growth and field soil[D]. Nanning: Guangxi University, 2018. (in Chinese)
    [5] 陈子英, 孙小凤, 韩梅, 等. 国内外绿肥研究进展 [J]. 青海农林科技, 2020, (3):54−58.

    CHEN Z Y, SUN X F, HAN M, et al. Research progress of green manure at home and abroad [J]. Science and Technology of Qinghai Agriculture and Forestry, 2020(3): 54−58. (in Chinese)
    [6] 苏利荣, 谭裕模, 何铁光, 等. 新植蔗间作不同绿肥压青还田的试验研究及经济效益分析 [J]. 热带作物学报, 2021, 42(3):747−753.

    SU L R, TAN Y M, HE T G, et al. Experimental study and Economic Benefit Analysis of Different Green Manures Intercropping and Green Manure Returning in Newly Planted Sugarcane [J]. Chinese Journal of Tropical Crops, 2021, 42(3): 747−753. (in Chinese)
    [7] 苏利荣, 谭裕模, 秦芳, 等. 绿豆/黑豆压青还田下减量施肥对宿根甘蔗产量和主要农艺性状的影响 [J]. 作物杂志, 2022, (6):105−110.

    SU L R, TAN Y M, QIN F, et al. Effects of reduced chemical fertilizer on yield and main agronomic traits of ratoon sugarcane under conditions of returning green mung bean/black bean into field [J]. Crops, 2022(6): 105−110. (in Chinese)
    [8] 刘鹏飞, 李向勇, 张正学, 等. 绿肥压青对甘蔗产量及抗旱性的影响 [J]. 贵州农业科学, 2015, 43(9):35−37,41.

    LIU P F, LI X Y, ZHANG Z X, et al. Effects of green manures on sugarcane yield and drought resistance [J]. Guizhou Agricultural Sciences, 2015, 43(9): 35−37,41. (in Chinese)
    [9] 张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述 [J]. 生态环境学报, 2019, 28(12):2464−2472.

    ZHANG X Q, YANG W F, XU Y J. Effects of Main Tillage Methods on Soil Structure, Nutrients and Micro-ecological Environment of upland in China: A Review [J]. Ecology and Environmental Sciences, 2019, 28(12): 2464−2472. (in Chinese)
    [10] 王世佳, 蒋代华, 朱文国, 等. 粉垄耕作对农田赤红壤团聚体结构的影响 [J]. 土壤学报, 2020, 57(2):326−335.

    WANG S J, JIANG D H, ZHU W G, et al. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil [J]. Acta Pedologica Sinica, 2020, 57(2): 326−335. (in Chinese)
    [11] 黎佐生, 蒋代华, 韦本辉. 粉垄耕作对宿根蔗地根际微生物及酶活性的影响 [J]. 新农业, 2020, (7):45−47.

    LI Z S, JIANG D H, WEI B H. Effects of powder ridge tillage on rhizosphere microorganisms and enzyme activities of ratoon sugarcane [J]. New Agriculture, 2020(7): 45−47. (in Chinese)
    [12] 赵钧洋, 覃树涛, 常媛, 等. 粉垄耕作促进甘蔗根系生长、养分吸收及增产 [J]. 热带作物学报, 2022, 43(3):529−538.

    ZHAO J Y, QIN S T, CHANG Y, et al. Fenlong tillage promotes sugarcane root growth, nutrient absorption and yield increase [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 529−538. (in Chinese)
    [13] 李素丽, 黄金玲, 韦本辉, 等. 粉垄耕作对甘蔗光合生理特性及产量品质的影响 [J]. 热带作物学报, 2021, 42(3):726−731.

    LI S L, HUANG J L, WEI B H, et al. Effects of fenlong tillage on photosynthetic and physiological characteristics, yield and quality of sugarcane(Saccharumofficinarum) [J]. Chinese Journal of Tropical Crops, 2021, 42(3): 726−731. (in Chinese)
    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [16] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展 [J]. 生态环境学报, 2020, 29(6):1277−1284.

    LIU H M, LI R Y, GAO J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics [J]. Ecology and Environmental Sciences, 2020, 29(6): 1277−1284. (in Chinese)
    [17] 李纯燕, 杨恒山, 萨如拉, 等. 不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响 [J]. 水土保持学报, 2017, 31(1):197−201,210.

    LI C Y, YANG H S, SA R L, et al. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods [J]. Journal of Soil and Water Conservation, 2017, 31(1): 197−201,210. (in Chinese)
    [18] 刘洪, 韦本辉, 党柯柯, 等. 粉垄耕作对甘蔗土壤微生物群落的影响 [J]. 热带作物学报, 2022, 43(3):597−605. doi: 10.3969/j.issn.1000-2561.2022.03.019

    LIU H, WEI B H, DANG K K, et al. Effect of deep vertical rotary tillage on microbial community in sugar cane soil [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 597−605. (in Chinese) doi: 10.3969/j.issn.1000-2561.2022.03.019
    [19] 曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考 [J]. 中国土壤与肥料, 2009, (4):1−3.

    CAO W D, HUANG H X. Ideas on restoration and development of green manures in China [J]. Soil and Fertilizer Sciences in China, 2009(4): 1−3. (in Chinese)
    [20] 谢金兰, 王维赞, 李毅杰, 等. 绿豆压青对蔗地培肥及甘蔗产量的效应 [J]. 江苏农业科学, 2014, 42(6):78−79,231. doi: 10.3969/j.issn.1002-1302.2014.06.024

    XIE J L, WANG W Z, LI Y J, et al. Effect of mung bean pressing on sugarcane field fertilization and sugarcane yield [J]. Jiangsu Agricultural Sciences, 2014, 42(6): 78−79,231. (in Chinese) doi: 10.3969/j.issn.1002-1302.2014.06.024
    [21] 苏利荣, 何铁光, 苏天明, 等. 甘蔗–绿豆间作压青还田和施氮水平对甘蔗性状的影响 [J]. 华南农业大学学报, 2019, 40(3):20−28.

    SU L R, HE T G, SU T M, et al. Effects of sugarcane-mungbean intercropping, bean straw returning and nitrogen application level on sugarcane traits [J]. Journal of South China Agricultural University, 2019, 40(3): 20−28. (in Chinese)
    [22] 裴小龙, 韩小龙, 钱建利, 等. 自然资源综合观测视角下的土壤肥力评价指标 [J]. 资源科学, 2020, 42(10):1953−1964.

    PEI X L, HAN X L, QIAN J L, et al. Soil fertility assessment indicators from the perspective of natural resources comprehensive observation [J]. Resources Science, 2020, 42(10): 1953−1964. (in Chinese)
    [23] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展 [J]. 土壤, 2016, 48(1):12−21.

    WANG L D, WANG F L, GUO C X, et al. Review: Progress of soil enzymology [J]. Soils, 2016, 48(1): 12−21. (in Chinese)
    [24] 陈彦云, 夏皖豫, 赵辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响 [J]. 生态学报, 2022, 42(12):5009−5021.

    CHEN Y Y, XIA W Y, ZHAO H, et al. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land [J]. Acta Ecologica Sinica, 2022, 42(12): 5009−5021. (in Chinese)
    [25] 张爱加, 周明明, 林文雄. 不同种植模式对甘蔗根际土壤生物学特性的影响 [J]. 植物营养与肥料学报, 2013, 19(6):1525−1532.

    ZHANG A J, ZHOU M M, LIN W X. Effects of different cultivation patterns on microorganism of soil rhizosphere in sugarcane fields [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1525−1532. (in Chinese)
    [26] 陈海生, 秦昌鲜, 彭崇, 等. 甘蔗间作花生对根际土壤微生物种群及酶活性的影响[J]. 江苏农业科学, 2019, 47(3): 223-226.

    CHEN H S, QIN C X, PENG C, , et al. Effects of sugarcane intercropping with peanut on rhizosphere soil microbial community and enzyme activity[J]. Jiangsu Agricultural Sciences, 2019, 47(3): 223-226. (in Chinese)
    [27] MAILLARD É, MCCONKEY B G, ST LUCE M, et al. Crop rotation, tillage system, and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada [J]. Soil and Tillage Research, 2018, 177: 97−104. doi: 10.1016/j.still.2017.12.001
    [28] WILHELM W W, WORTMANN C S. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature [J]. Agronomy Journal, 2004, 96(2): 425−432. doi: 10.2134/agronj2004.4250
    [29] 刘富成, 李照杰, 蔡文伟, 等. 种植密度和深度对甘蔗产量及抗倒伏的影响 [J]. 热带作物学报, 2024, 45(2):330−339.

    LIU F C, LI Z J, CAI W W, et al. Effects of planting densities and planting depths on yield and lodging resistance in sugarcane [J]. Chinese Journal of Tropical Crops, 2024, 45(2): 330−339. (in Chinese)
    [30] 韦剑锋, 张灵, 韦冬萍, 等. 机械耕作方式对甘蔗干物质与养分积累的影响 [J]. 湖北农业科学, 2022, 61(21):86−89.

    WEI J F, ZHANG L, WEI D P, et al. Effects of mechanical tillage patterns on dry matter and nutrient accumulation of sugarcane [J]. Hubei Agricultural Sciences, 2022, 61(21): 86−89. (in Chinese)
    [31] 韩上, 武际, 李敏, 等. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质 [J]. 植物营养与肥料学报, 2020, 26(2):276−284.

    HAN S, WU J, LI M, et al. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276−284. (in Chinese)
    [32] 谢金兰, 林丽, 李长宁, 等. 氮肥减量条件下间作绿豆压青对甘蔗生长及氮代谢的影响 [J]. 作物杂志, 2020, (4):164−169.

    XIE J L, LIN L, LI C N, et al. Effects of intercropping mungbean straw returning on sugarcane growth and nitrogen metabolism under nitrogen fertilizer reduction [J]. Crops, 2020(4): 164−169. (in Chinese)
    [33] 曾伟聪, 覃东爽, 韩世健, 等. 粉垄“145” 模式在新植蔗上的应用效应及其生理生态基础 [J]. 广西植物, 2023, 43(2):357−367.

    ZENG W C, QIN D S, HAN S J, et al. Application effect of the model of Fenlong “145” on newly planted sugarcane and its physiological and ecological bases [J]. Guihaia, 2023, 43(2): 357−367. (in Chinese)
    [34] 韦本辉. 甘蔗粉垄“145” 技术体系的构建与应用探讨 [J]. 甘蔗糖业, 2021, 50(3):1−4.

    WEI B H. The study on the construction and application of sugarcane fenlong “145” technology system [J]. Sugarcane and Canesugar, 2021, 50(3): 1−4. (in Chinese)
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2024-01-18
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回