• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

樟芝-太子参双向液体发酵培养基优化及效应分析

赵生月 吴小环 姜春玲 张余 郑世仲 刘盛荣 叶祖云

赵生月,吴小环,姜春玲,等. 樟芝-太子参双向液体发酵培养基优化及效应分析 [J]. 福建农业学报,2024,39(X):1−9
引用本文: 赵生月,吴小环,姜春玲,等. 樟芝-太子参双向液体发酵培养基优化及效应分析 [J]. 福建农业学报,2024,39(X):1−9
ZHAO S Y, WU X H, JIANG C L, et al. Optimization of Antrodia camphorata-Pseudostellaria heterophylla bi-directional liquid fermentation medium and effect analysis [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−9
Citation: ZHAO S Y, WU X H, JIANG C L, et al. Optimization of Antrodia camphorata-Pseudostellaria heterophylla bi-directional liquid fermentation medium and effect analysis [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−9

樟芝-太子参双向液体发酵培养基优化及效应分析

基金项目: 福建省科技厅对外合作项目(2021I0046);福建省科技厅高校产学合作项目(2021N5005);宁德师范学院科研项目(2022ZX01)
详细信息
    作者简介:

    赵生月 (1996−),女,硕士研究生,主要从事中药发酵及活性成分分析研究,E-mail:1870770064@qq.com

    通讯作者:

    刘盛荣 (1973−),男,博士,教授,主要从事食药用菌发酵及育种研究,E-mail:fjhost@163.com

  • 中图分类号: Q93

Optimization of Antrodia camphorata-Pseudostellaria heterophylla bi-directional liquid fermentation medium and effect analysis

  • 摘要:   目的  有效利用太子参根须副产物资源,提高樟芝(Antrodia camphorata)菌丝产量,促进活性成分合成。  方法  以太子参根须(粉末)作为培养基组分,Plackett-Burman试验筛选影响樟芝菌丝生长的关键成分,正交试验优化培养基组成。  结果  筛选试验结果表明,葡萄糖、酵母粉、蛋白胨及KH2PO4对樟芝菌丝生长有重要影响,正交试验优化的培养基组成为:太子参6 g·L−1,葡萄糖10 g·L−1,酵母粉4 g·L−1,蛋白胨6 g·L−1,KH2PO4 1.5 g·L−1。利用优化培养基深层发酵,樟芝生物量达到4.73 g·L−1,与对照培养基及PDB培养基相比,胞内三萜含量分别提高2.75%和24.85%,胞外多糖分别提高161.11%和113.64%;发酵液中含有高密度无性孢子,达到1.8×107 孢子·mL−1  结论  太子参适合作为樟芝双向液体发酵的药性成分,可有效促进樟芝菌丝生长、活性成分合成和无性孢子形成,为太子参根须副产物资源利用提供新途径。
  • 图  1  樟芝在不同培养基发酵形成的无性孢子

    A:优化培养基;B:对照培养基;C:PDB。

    Figure  1.  Formation of asexual spores of A. camphorata in different media after flask fermentation

    A: Optimal medium; B: Control medium; C: PDB medium.

    表  1  培养基成分筛选的Plackett-Burman试验变量、水平及编码值

    Table  1.   Level and code of variables for Plackett-Burman design for medium composition screening

    变量
    Variables
    代码
    Codes
    水平 Levels/ (g·L−1)
    低 low (−1) 高 high (+1)
    葡萄糖
    Glucose
    A 0 10
    酵母粉
    Yeast extract
    B 0 5
    蛋白胨
    Peptone
    C 0 5
    蔗糖
    Sucrose
    D 0 10
    玉米粉
    Corn flour
    E 0 5
    KH2PO4 F 0 1
    MgSO4·7H2O G 0 0.50
    下载: 导出CSV

    表  2  培养基优化的L16 (45) 正交试验因素及水平

    Table  2.   The factors and levels used in L16(45) Taguchi array design experiments for medium optimization

    水平 Levels 因素 Factors/(g·L−1)
    太子参 X1 葡萄糖 X2 酵母粉 X3 蛋白胨 X4 KH2PO4 X5
    1 2 5 2 2 0.5
    2 4 10 4 4 1
    3 6 15 6 6 1.5
    4 8 20 8 8 2
    下载: 导出CSV

    表  3  樟芝发酵培养基成分筛选的PB试验设计与生物量结果

    Table  3.   Plackett-Burman design matrix of variables for biomass yield of A. camphorata for medium composition screening

    试验号
    Run
    因素 Factors 生物量
    Biomass /(g·L−1)
    葡萄糖 A 酵母粉 B 蛋白胨 C 蔗糖 D 虚拟变量 Dm1 玉米粉 E KH2PO4 F MgSO4·7H2O G 虚拟变量 Dm2
    1 −1 −1 1 −1 1 1 −1 1 1 0.87
    2 −1 1 1 1 −1 −1 −1 1 −1 1.81
    3 1 −1 1 1 1 −1 −1 −1 1 1.45
    4 1 1 1 −1 −1 −1 1 −1 1 3.26
    5 1 −1 −1 −1 1 −1 1 1 −1 1.39
    6 −1 −1 −1 −1 −1 −1 −1 −1 −1 1.88
    7 −1 1 1 −1 1 1 1 −1 −1 1.43
    8 1 1 −1 1 1 1 −1 −1 −1 2.10
    9 1 1 −1 −1 −1 1 −1 1 1 1.04
    10 −1 1 −1 1 1 −1 1 1 1 2.39
    11 −1 −1 −1 1 −1 −1 1 −1 1 1.41
    12 1 −1 1 1 −1 1 1 1 −1 1.92
    Dm1和Dm2为虚拟变量。
    Dm1 and Dm2 were dummy variables.
    下载: 导出CSV

    表  4  不同培养基成分对樟芝生物量的效应,贡献率及重要性排序

    Table  4.   Main effect, percent contribution and importance order of the tested nutrient components on the mycelial growth of A. camphorata in submerged cultures

    因素
    Factors
    效应
    Effects
    贡献率
    Percent contribution/%
    重要性排序
    Importance order
    葡萄糖 A 0.23 3.42 5
    酵母粉 B 0.52 17.61 2
    蛋白胨 C 0.088 0.51 7
    蔗糖 D 0.20 2.67 6
    玉米粉 E −0.57 21.17 1
    KH2PO4 F 0.44 12.78 3
    MgSO4·7H2O G −0.35 8.11 4
    下载: 导出CSV

    表  5  培养基优化的正交试验结果及极差分析

    Table  5.   Results of the orthogonal design experiments and range analysis for medium optimization

    试验号
    Run
    因素 Factors 生物量 Biomass /(g·L−1)
    太子参 X1 葡萄糖 X2 酵母粉 X3 蛋白胨 X4 KH2PO4 X5
    1 1 1 1 1 1 2.90
    2 1 2 2 2 2 4.41
    3 1 3 3 3 3 4.52
    4 1 4 4 4 4 2.53
    5 2 1 2 3 4 2.92
    6 2 2 1 4 3 4.10
    7 2 3 4 1 2 3.34
    8 2 4 3 2 1 4.51
    9 3 1 3 4 2 2.67
    10 3 2 4 3 1 4.62
    11 3 3 1 2 4 3.93
    12 3 4 2 1 3 3.82
    13 4 1 4 2 3 3.26
    14 4 2 3 1 4 3.62
    15 4 3 2 4 1 2.48
    16 4 4 1 3 2 3.17
    K1 3.592 2.940 3.423 3.527 3.630
    K2 3.717 4.188 4.027 3.408 3.397
    K3 3.760 3.567 3.807 3.830 3.925
    K4 3.132 3.507 2.945 3.437 3.250
    极差R 0.628 1.248 1.082 0.422 0.675
    优化水平
    Optimal level
    3 2 2 3 3
    下载: 导出CSV

    表  6  正交试验结果的方差分析

    Table  6.   Variance analysis on the results of orthogonal experiment

    因素
    Factors
    平方和
    Sum of squares
    自由度
    Degree of freedom
    均方
    Mean square
    F
    F value
    显著性
    Significance
    太子参 X1 0.992 3 0.331 2.214
    葡萄糖 X2 3.135 3 1.045 6.998 *
    酵母粉 X3 2.709 3 0.903 6.047 *
    蛋白胨 X4 0.448 3 0.149 1.000
    KH2PO4 X5 1.040 3 0.347 2.321
    误差Error 0.45 3 0.150
    *表示差异显者,P<0.10。
    * significant differences, P<0.10.
    下载: 导出CSV

    表  7  不同培养基发酵樟芝菌丝产量以及菌丝和发酵液主要活性成分含量

    Table  7.   The biomass production, the contents of polysaccharide and triterpenoids in the mycelia of A. camphorata submerged fermentation in different media and corresponding exopolysaccharides concentrations

    培养基
    Medium
    生物量
    Biomass (g·L−1)
    胞内三萜
    Intracellular triterpenoids (mg·g−1)
    胞内多糖
    Intracellular polysaccharides (mg·g−1)
    胞外多糖
    Exopolysaccharides (g·L−1)
    优化 Optimum 4.73±0.07 a 20.15±0.78 a 69.21±3.84 a 0.94±0.49 a
    对照 Control 1.96±0.05 b 19.61±0.17 a 70.27±1.31 a 0.36±0.03 c
    PDB 1.34±0.08 c 16.14±1.51 b 56.39±0.86 b 0.44±0.04 b
    同列数字标记不同小写字母表示差异显著(P<0.05)。
    Data in the same column with different letters represent significant differences (P<0.05).
    下载: 导出CSV
  • [1] LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124−156.
    [2] 夏永军, 张贤芳, 许赣荣. 响应面法优化樟芝液态发酵产Antrodin C [J]. 食品科学, 2012, 33(11):185−189.

    XIA Y J, ZHANG X F, XU G R. Optimization of medium components for antrodin C production by Antrodia camphorata using response surface methodology [J]. Food Science, 2012, 33(11): 185−189. (in Chinese)
    [3] GEETHANGILI M, TZENG Y M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds [J]. Evidence-Based Complementary and Alternative Medicine:ECAM, 2011, 2011: 212641.
    [4] 庄毅, 潘扬, 谢小梅, 等. 药用真菌“双向发酵” 的起源、发展及其优势与潜力 [J]. 中国食用菌, 2007, 26(2):3−6. doi: 10.3969/j.issn.1003-8310.2007.02.001

    ZHUANG Y, PAN Yang, XIE X M, et al. The origin, development and its advantage and potential of “the Bi-directional solid fermentation” for medicinal fungi [J]. Edible Fungi of China, 2007, 26(2): 3−6. (in Chinese) doi: 10.3969/j.issn.1003-8310.2007.02.001
    [5] 辛燕花, 梁彬, 王颖霞, 等. 灵芝-银杏双向液体发酵条件优化及抗氧化的研究 [J]. 菌物学报, 2017, 36(10):1427−1435.

    XIN Y H, LIANG B, WANG Y X, et al. Optimization of the Ganoderma lucidum- Ginkgo biloba bi-directional liquid fermentation condition and antioxidation properties of its products [J]. Mycosystema, 2017, 36(10): 1427−1435. (in Chinese)
    [6] 辛燕花, 张铁丹, 张建华, 等. 灵芝-何首乌双向液体发酵菌质抗氧化活性研究 [J]. 食用菌学报, 2018, 25(3):63−71.

    XIN Y H, ZHANG T D, ZHANG J H, et al. Antioxidant capacity of fungal substance from Bi-directional fermentation of Ganoderma lucidum and Polygonum multiflorum [J]. Acta Edulis Fungi, 2018, 25(3): 63−71. (in Chinese)
    [7] 胡永乐, 张传海, 林崇展, 等. 响应面法优化蛹虫草与厚朴双向液体发酵工艺 [J]. 菌物学报, 2020, 39(5):944−954.

    HU Y L, ZHANG C H, LIN C Z, et al. Response surface methodology optimizing liquid fermentation process of Cordyceps militaris by use of magnoliae officinalis cortex as additional substrate [J]. Mycosystema, 2020, 39(5): 944−954. (in Chinese)
    [8] KIM H, JEONG J H, HWANG J H, et al. Enhancement of immunostimulation and anti-metastasis in submerged culture of bearded tooth mushroom ( Hericium erinaceum) mycelia by addition of ginseng extract [J]. Food Science and Biotechnology, 2010, 19(5): 1259−1266. doi: 10.1007/s10068-010-0180-1
    [9] 赵艳, 刘高强, 朱朝阳, 等. 不同植物药提取物对灵芝细胞生长和胞内三萜产物形成的影响 [J]. 菌物学报, 2011, 30(2):249−254.

    ZHAO Y, LIU G Q, ZHU C Y, et al. Effects of extracts from different phytomedicines on cell growth and intracellular triterpenoids formation of Ganoderma lucidum in submerged fermentation [J]. Mycosystema, 2011, 30(2): 249−254. (in Chinese)
    [10] 李秋月, 林连兵, 杨雪娇, 等. 微生物发酵中草药的研究现状 [J]. 微生物学通报, 2021, 48(6):2232−2244.

    LI Q Y, LIN L B, YANG X J, et al. Research status of microbial fermentation of Chinese herbal medicine [J]. Microbiology China, 2021, 48(6): 2232−2244. (in Chinese)
    [11] 王静涵, 张斯童, 滕利荣, 等. 益生菌发酵中药的研究现状及产品开发 [J]. 食品工业科技, 2020, 41(14):337−343,348.

    WANG J H, ZHANG S T, TENG L R, et al. Research status and product development of probiotic fermentation of traditional Chinese medicine [J]. Science and Technology of Food Industry, 2020, 41(14): 337−343,348. (in Chinese)
    [12] HUSSAIN A, BOSE S, WANG J H, et al. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines [J]. Food Research International, 2016, 81: 1−16. doi: 10.1016/j.foodres.2015.12.026
    [13] HU D J, SHAKERIAN F, ZHAO J, et al. Chemistry, pharmacology and analysis of Pseudostellaria heterophylla: A mini-review [J]. Chinese Medicine, 2019, 14: 21. doi: 10.1186/s13020-019-0243-z
    [14] 杨倩, 蔡茜茜, 林佳铭, 等. 太子参的生物活性及其在食品工业中的应用 [J]. 食品工业科技, 2021, 42(11):335−341.

    YANG Q, CAI X X, LIN J M, et al. Biological activities of Radix pseudostellariae and its application in food industry [J]. Science and Technology of Food Industry, 2021, 42(11): 335−341. (in Chinese)
    [15] CHANG C Y, LEE C L, PAN T M. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures [J]. Applied Microbiology and Biotechnology, 2006, 72(4): 654−661. doi: 10.1007/s00253-006-0325-6
    [16] LU Z M, LEI J Y, XU H Y, et al. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques [J]. Applied Microbiology and Biotechnology, 2011, 92(2): 371−379. doi: 10.1007/s00253-011-3544-4
    [17] HE Y C, HE K Z, PU Q, et al. Optimization of cultivating conditions for triterpenoids production from Antrodia cinnmomea [J]. Indian Journal of Microbiology, 2012, 52(4): 648−653. doi: 10.1007/s12088-012-0290-y
    [18] ZHANG H, XIA Y J, WANG Y L, et al. Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata [J]. Biochemical Engineering Journal, 2013, 79: 194−199. doi: 10.1016/j.bej.2013.08.005
    [19] LI H X, LU Z M, GENG Y, et al. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation [J]. Bioresource Technology, 2015, 194: 334−343. doi: 10.1016/j.biortech.2015.06.144
    [20] CAI C S, MA J X, HAN C R, et al. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang [J]. Scientific Reports, 2019, 9: 7418. doi: 10.1038/s41598-019-43886-0
    [21] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350−356. doi: 10.1021/ac60111a017
    [22] PLACKETT R L, BURMAN J P. The design of optimum multifactorial experiments [J]. Biometrika, 1946, 33(4): 305−325. doi: 10.1093/biomet/33.4.305
    [23] XIE C Y, GUO H Z, WU Z Y, et al. Optimization of high-quality dietary fiber production in submerged fermentation by Agrocybe chaxingu [J]. Annals of Microbiology, 2013, 63(3): 1169−1175. doi: 10.1007/s13213-012-0575-8
    [24] LI Y, LIU Z Q, CUI F J, et al. Application of Plackett–Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria Mali ND−16 [J]. Applied Microbiology and Biotechnology, 2007, 77(2): 285−291. doi: 10.1007/s00253-007-1167-6
    [25] XU P, DING Z Y, QIAN Z, et al. Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media [J]. Enzyme and Microbial Technology, 2008, 42(4): 325−331. doi: 10.1016/j.enzmictec.2007.10.016
    [26] DUDEKULA U T, DORIYA K, DEVARAI S K. A critical review on submerged production of mushroom and their bioactive metabolites [J]. 3 Biotech, 2020, 10(8): 337. doi: 10.1007/s13205-020-02333-y
    [27] 冯路瑶, 程显好, 董洪新, 等. 不同中药提取物对牛樟芝生长和胞内三萜产物形成的影响 [J]. 中国食用菌, 2018, 37(2):42−46.

    FENG L Y, CHENG X H, DONG H X, et al. Effects of extracts from different Chinese herb medicine on growth and intracellular triterpenoids formation of Antrodia camphorate [J]. Edible Fungi of China, 2018, 37(2): 42−46. (in Chinese)
    [28] YANG F C, MA T W, CHUANG Y T. Medium modification to enhance the formation of bioactive metabolites in shake flask cultures of Antrodia cinnamomea by adding citrus peel extract [J]. Bioprocess and Biosystems Engineering, 2012, 35(8): 1251−1258. doi: 10.1007/s00449-012-0712-6
    [29] LI S L, HUANG Z N, HSIEH H H, et al. The augmented anti-tumor effects of Antrodia camphorata co-fermented with Chinese medicinal herb in human hepatoma cells [J]. The American Journal of Chinese Medicine, 2009, 37(4): 771−783. doi: 10.1142/S0192415X09007235
    [30] 华蓉, 高章会, 孙达锋, 等. 牛樟芝菌丝体培养条件筛选 [J]. 中国食用菌, 2023, 42(1):43−47.

    HUA R, GAO Z H, SUN D F, et al. Screening of culture conditions for Antrodia camphporata Mycelium [J]. Edible Fungi of China, 2023, 42(1): 43−47. (in Chinese)
    [31] 李华祥, 陆震鸣, 耿燕, 等. 樟芝深层发酵工艺研究进展 [J]. 菌物学报, 2017, 36(10):1332−1345.

    LI H X, LU Z M, GENG Y, et al. Recent advance in submerged fermentation of Taiwanofungus camphoratus [J]. Mycosystema, 2017, 36(10): 1332−1345. (in Chinese)
    [32] LU Z M, HE Z, LI H X, et al. Modified arthroconidial inoculation method for the efficient fermentation of Antrodia camphorata ATCC 200183 [J]. Biochemical Engineering Journal, 2014, 87: 41−49. doi: 10.1016/j.bej.2014.03.020
    [33] GENG Y, HE Z, LU Z M, et al. Antrodia camphorata ATCC 200183 sporulates asexually in submerged culture [J]. Applied Microbiology and Biotechnology, 2013, 97(7): 2851−2858. doi: 10.1007/s00253-012-4513-2
    [34] 李华祥, 陆震鸣, 朱青, 等. 钙离子调控樟芝深层发酵无性产孢及其分子机制 [J]. 生物工程学报, 2017, 33(7):1124−1135.

    LI H X, LU Z M, ZHU Q, et al. Effect of calcium on sporulation of Taiwanofungus camphoratus in submerged fermentation [J]. Chinese Journal of Biotechnology, 2017, 33(7): 1124−1135. (in Chinese)
    [35] 李华祥, 王娟娟, 石瑀, 等. 金属离子促进樟芝深层发酵无性产孢 [J]. 食品与发酵工业, 2023, 49(10):55−63.

    LI H X, WANG J J, SHI Y, et al. Metal ions promoting sporulation of Antrodia cinnamomea in submerged fermentation [J]. Food and Fermentation Industries, 2023, 49(10): 55−63. (in Chinese)
    [36] 李华祥, 石瑀, 罗志珊, 等. 牛樟树提取物促进樟芝深层发酵无性产孢及其应用 [J]. 食品与发酵工业, 2022, 48(16):65−71.

    LI H X, SHI Y, LUO Z S, et al. Extract of Cinnamomum kanehirae Hay promoting sporulation of Antrodia cinnamomea in submerged fermentation and its application [J]. Food and Fermentation Industries, 2022, 48(16): 65−71. (in Chinese)
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-10-25
  • 网络出版日期:  2024-01-25

目录

    /

    返回文章
    返回