• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米灌浆期淹水胁迫对籽粒品质的影响

弓雪 卢生乔 陈坤 覃宏宇 周锦国 韦正乙 钟昌松 杨耀迥 冀宇奇 刘亚利 张述宽

弓雪,卢生乔,陈坤,等. 玉米灌浆期淹水胁迫对籽粒品质的影响 [J]. 福建农业学报,2023,38(7):1−9
引用本文: 弓雪,卢生乔,陈坤,等. 玉米灌浆期淹水胁迫对籽粒品质的影响 [J]. 福建农业学报,2023,38(7):1−9
GONG X, LU S Q, CHEN K, et al. Effect of Waterlogging on Quality of Maize Kernels at Filling Stage [J]. Fujian Journal of Agricultural Sciences,2023,38(7):1−9
Citation: GONG X, LU S Q, CHEN K, et al. Effect of Waterlogging on Quality of Maize Kernels at Filling Stage [J]. Fujian Journal of Agricultural Sciences,2023,38(7):1−9

玉米灌浆期淹水胁迫对籽粒品质的影响

基金项目: 广西自然科学基金项目(GXNSFAA297136);广西创新驱动发展专项资金项目(桂科AA22068095);广西农业科学院基本科研业务专项(桂农科2021YT016);广西农科院科技发展基金项目(桂农科2021ZX11、桂农科2022JM18)
详细信息
    作者简介:

    弓雪(1983−),女,博士,副研究员,研究方向:玉米分子育种及新品种选育(E-mail:280404497@qq.com)

    通讯作者:

    刘亚利(1981−),女,硕士,助理研究员,研究方向:玉米遗传育种(E-mail:715727271@qq.com)

    张述宽(1963−),男,本科,研究员,研究方向:玉米遗传育种(E-mail:790039187@qq.com)

  • 中图分类号: S513

Effect of Waterlogging on Quality of Maize Kernels at Filling Stage

  • 摘要:   目的  研究淹水对灌浆期玉米籽粒品质的影响,为玉米耐涝品种的选育和耐涝机制研究提供参考。  方法  供试材料为广西骨干自交系88M-1-8和先21A,授粉后分别进行正常水分处理(CK)和淹水处理(W),每个处理设14和18 d两个持续时间,即CK-14、CK-18、W-14和W-18,测定正常供水和淹水胁迫下玉米籽粒中可溶性蛋白质、可溶性糖、淀粉、蔗糖、脱落酸(ABA)含量,及蔗糖合成酶(分解方向,SS-I)和结合态淀粉合成酶(GBSS)活性,利用主成分分析和隶属函数法评价淹水胁迫对玉米品质的影响。  结果  88M-1-8在W-14时籽粒蛋白、淀粉和ABA含量、SS-I和GBSS活性显著高于先21A,在W-18时可溶性糖、淀粉和ABA含量、GBSS活性显著高于先21A。2个自交系随着淹水天数的增加,籽粒中可溶性蛋白、淀粉和蔗糖含量、SS-I和GBSS活性均显著提高。与正常水分处理相比,88M-1-8在W-14时蛋白、淀粉和ABA含量、SS-I活性上升幅度更大,先21A可溶性糖和蔗糖含量、GBSS活性上升幅度更大;88M-1-8在W-18时可溶性糖和ABA含量增幅更大,而先21A蛋白、淀粉和蔗糖含量、SS-I和GBSS活性增幅更大。利用主成分分析及隶属函数法对玉米籽粒的各项指标进行综合评价,籽粒品质的耐涝性结果表明:W-14的88M-1-8>W-18的88M-1-8>W-14的先21A>W-18的先21A。  结论  淹水胁迫提高88M-1-8和先21A籽粒中可溶性蛋白、可溶性糖、淀粉和蔗糖含量、SS-I和GBSS活性。但88M-1-8和先21A对淹水胁迫的生化应答存在差异,淹水胁迫后耐涝自交系88M-1-8的SS-I和GBSS活性、淀粉和ABA含量均显著高于不耐涝自交系先21A。随着胁迫时间的增加,88M-1-8和先21A籽粒品质的耐涝性均有所降低,但88M-1-8耐涝性仍高于先21A。因此,在涝害频发区域应选择耐涝性较强的自交系。
  • 图  1  淹水胁迫对玉米可溶性蛋白含量的影响

    图柱上不同小写字母表示2个自交系不同处理间差异显著(P<0.05),图2-4同。

    Figure  1.  Effect of waterlogging on soluble protein content in maize kernels

    Data with different lowercase letters on a bar indicated significant differences at P<0.05. Same for Figs. 2-4.

    图  2  淹水胁迫对玉米糖类物质含量的影响

    Figure  2.  Effect of waterlogging on sugar content in maize kernels

    图  3  淹水胁迫对玉米淀粉合成相关酶活性的影响

    Figure  3.  Effect of waterlogging on activities of enzymes related to starch synthesis in maize kernels

    图  4  淹水胁迫对玉米ABA含量的影响

    Figure  4.  Effect of waterlogging on ABA content in maize kernels

    图  5  各指标的主成分分析的碎石图

    Figure  5.  Lithotripsy diagram of principle component analysis on indicators

    表  1  各项指标的耐涝系数

    Table  1.   Waterlogging resistance coefficients on indicators

    自交系
    Inbred line
    处理天数
    Treatment day
    可溶性蛋白
    Soluble protein
    可溶性糖
    Soluble sugar
    淀粉
    Starch
    蔗糖
    Sucrose
    蔗糖合成酶(分解方向)
    SS-I
    结合态淀粉合成酶
    GBSS
    脱落酸
    ABA
    88M-1-814 d1.141.111.530.991.190.911.18
    18 d0.981.191.201.011.091.051.51
    先21A14 d1.031.791.101.571.201.540.88
    18 d1.111.031.551.111.081.201.03
    平均值 Mean1.071.281.341.171.141.171.15
    标准偏差 STDEV0.070.350.230.270.060.270.27
    变异系数
    Variable coefficient/%
    6.6827.2217.0523.485.6623.2523.29
    下载: 导出CSV

    表  2  各指标的主成分分析的载荷矩阵

    Table  2.   Load matrix of principle component analysis on indicators

    指标
    Index
    因子载荷 Factor loading
    PC1PC2
    可溶性蛋白 Soluble protein−0.420.91
    可溶性糖 Soluble sugar0.98−0.05
    淀粉 Starch−0.770.61
    蔗糖 Sucrose0.980.15
    蔗糖合成酶(分解方向) SS-I0.540.48
    结合态淀粉合成酶 GBSS0.920.05
    脱落酸 ABA−0.61−0.74
    下载: 导出CSV

    表  3  主成分分析的特征值和贡献率

    Table  3.   Eigenvalue and contribution rate of principle components

    项目
    Item
    因子载荷 Factor loading
    PC1PC2
    特征值 Eigen Value4.222.01
    贡献率 Contribution rate/%60.2728.66
    累积贡献率 Cumulative contribution rate/%60.2788.93
    下载: 导出CSV

    表  4  玉米自交系不同处理的隶属函数分析及耐涝性排序

    Table  4.   Membership function analysis on waterlogging tolerance of maize inbred lines under treatments

    自交系
    Inbred line
    处理天数
    Treatment day
    综合指标 Comprehensive index隶属函数值 Subordinate function valueD
    D Value
    排序
    Ranking
    F1F2UX1UX2
    88M-1-8
    88M-1-8
    14 d−0.6460.7980.0001.0000.5391
    18 d−0.363−1.4470.1330.0000.2912
    先21A
    Xian 21A
    14 d1.4900.1541.0000.7130.2863
    18 d−0.4810.4950.0770.8650.1244
    下载: 导出CSV
  • [1] REN B Z, DONG S T, LIU P, et al. Ridge tillage improves plant growth and grain yield of waterlogged summer maize [J]. Agricultural Water Management, 2016, 177: 392−399. doi: 10.1016/j.agwat.2016.08.033
    [2] HUANG C, GAO Y, QIN A Z, et al. Effects of waterlogging at different stages and durations on maize growth and grain yields [J]. Agricultural Water Management, 2022, 261: 107334. doi: 10.1016/j.agwat.2021.107334
    [3] 余卫东, 冯利平, 盛绍学, 等. 黄淮地区涝渍胁迫影响夏玉米生长及产量 [J]. 农业工程学报, 2014, 30(13):127−136. doi: 10.3969/j.issn.1002-6819.2014.13.016

    YU W D, FENG L P, SHENG S X, et al. Effect of waterlogging at jointing and tasseling stages on growth and yield of summer maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 127−136.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.13.016
    [4] TIAN L X, LI J, BI W S, et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L. ) Under field conditions [J]. Agricultural Water Management, 2019, 218: 250−258. doi: 10.1016/j.agwat.2019.03.054
    [5] HUANG C, ZHANG W Q, WANG H, et al. Effects of waterlogging at different stages on growth and ear quality of waxy maize [J]. Agricultural Water Management, 2022, 266: 107603. doi: 10.1016/j.agwat.2022.107603
    [6] TIAN L X, BI W S, LIU X, et al. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L. ) under field conditions [J]. Acta Physiologiae Plantarum, 2019, 41(5): 63. doi: 10.1007/s11738-019-2859-0
    [7] 任佰朝, 张吉旺, 李霞, 等. 淹水胁迫对夏玉米籽粒灌浆特性和品质的影响 [J]. 中国农业科学, 2013, 46(21):4435−4445. doi: 10.3864/j.issn.0578-1752.2013.21.005

    REN B Z, ZHANG J W, LI X, et al. Effect of waterlogging on grain filling and quality of summer maize [J]. Scientia Agricultura Sinica, 2013, 46(21): 4435−4445.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.21.005
    [8] REN B, ZHANG J, DONG S, et al. Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L. ) under field conditions [J]. Journal of Agronomy and Crop Science, 2016, 202(6): 564−575. doi: 10.1111/jac.12183
    [9] 于维祯, 张晓驰, 胡娟, 等. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响 [J]. 中国农业科学, 2021, 54(18):3834−3846. doi: 10.3864/j.issn.0578-1752.2021.18.004

    YU W Z, ZHANG X C, HU J, et al. Combined effects of shade and waterlogging on yield and photosynthetic characteristics of summer maize [J]. Scientia Agricultura Sinica, 2021, 54(18): 3834−3846.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.18.004
    [10] 李绍长, 盛茜, 陆嘉惠, 等. 玉米籽粒灌浆生长分析 [J]. 石河子大学学报(自然科学版), 1999, 17(S1):1−5. doi: 10.13880/j.cnki.65-1174/n.1999.s1.001

    LI S C, SHENG Q, LU J H, et al. Growth analysis on the process of grain filling in maize [J]. Journal of Shihezi University (Natural Science), 1999, 17(S1): 1−5.(in Chinese) doi: 10.13880/j.cnki.65-1174/n.1999.s1.001
    [11] 贾波, 谢庆春, 倪向群. 玉米籽粒灌浆特性研究进展 [J]. 江西农业学报, 2015, 27(12):15−18. doi: 10.19386/j.cnki.jxnyxb.2015.12.004

    JIA B, XIE Q C, NI X Q. Research progress in characteristics of grain filling in maize [J]. Acta Agriculturae Jiangxi, 2015, 27(12): 15−18.(in Chinese) doi: 10.19386/j.cnki.jxnyxb.2015.12.004
    [12] 李金才, 董琦, 余松烈. 不同生育期根际土壤淹水对小麦品种光合作用和产量的影响 [J]. 作物学报, 2001, 27(4):434−441.

    LI J C, DONG Q, YU S L. Effect of waterlogging at different growth stages on photosynthesis and yield of different wheat cultivars [J]. Acta Agronomica Sinica, 2001, 27(4): 434−441.(in Chinese)
    [13] 方保停, 张胜全, 王敏, 等. 节水栽培冬小麦光合器官遮光对籽粒蛋白质形成的影响 [J]. 麦类作物学报, 2008, 28(2):266−270.

    FANG B T, ZHANG S Q, WANG M, et al. Effects of darkening photosynthetic organs on grain protein synthesis of winter wheat in water-saving cultivation [J]. Journal of Triticeae Crops, 2008, 28(2): 266−270.(in Chinese)
    [14] YANG H A, HUANG T Q, DING M Q, et al. Effects of waterlogging around flowering stage on the grain yield and eating properties of fresh waxy maize [J]. Cereal Chemistry, 2016, 93(6): 605−611. doi: 10.1094/CCHEM-03-16-0044-R
    [15] WANG J E, MAO Y X, HUANG T Q, et al. Water and heat stresses during grain formation affect the physicochemical properties of waxy maize starch [J]. Journal of the Science of Food and Agriculture, 2021, 101(4): 1331−1339. doi: 10.1002/jsfa.10743
    [16] WU X Y, LONG W J, CHEN D, et al. Waxy allele diversity in waxy maize landraces of Yunnan Province, China [J]. Journal of Integrative Agriculture, 2022, 21(2): 578−585. doi: 10.1016/S2095-3119(20)63471-2
    [17] 房经贵, 朱旭东, 贾海锋, 等. 植物蔗糖合酶生理功能研究进展 [J]. 南京农业大学学报, 2017, 40(5):759−768. doi: 10.7685/jnau.201706003

    FANG J G, ZHU X D, JIA H F, et al. Research advances on physiological function of plant sucrose synthase [J]. Journal of Nanjing Agricultural University, 2017, 40(5): 759−768.(in Chinese) doi: 10.7685/jnau.201706003
    [18] 高春华, 冯波, 李国芳, 等. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响 [J]. 作物学报, 2023, 49(3):821−832.

    GAO C H, FENG B, LI G F, et al. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821−832.(in Chinese)
    [19] 范雪梅, 姜东, 戴廷波, 等. 花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响 [J]. 中国农业科学, 2005, 38(6):1132−1141. doi: 10.3321/j.issn:0578-1752.2005.06.010

    FAN X M, JIANG D, DAI T B, et al. Effects of nitrogen rates on activities of key regulatory enzymes for grain starch and protein accumulation in wheat grown under drought and waterlogging from anthesis to maturity [J]. Scientia Agricultura Sinica, 2005, 38(6): 1132−1141.(in Chinese) doi: 10.3321/j.issn:0578-1752.2005.06.010
    [20] ZHOU Q, HUANG M, HUANG X, et al. Effect of post-anthesis waterlogging on biosynthesis and granule size distribution of starch in wheat grains [J]. Plant Physiology and Biochemistry, 2018, 132: 222−228. doi: 10.1016/j.plaphy.2018.08.035
    [21] BENSCHOP J J, JACKSON M B, GÜHL K, et al. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance [J]. The Plant Journal, 2005, 44(5): 756−768. doi: 10.1111/j.1365-313X.2005.02563.x
    [22] CASTONGUAY Y, NADEAU P, SIMARD R R. Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa [J]. Plant, Cell and Environment, 1993, 16(6): 695−702. doi: 10.1111/j.1365-3040.1993.tb00488.x
    [23] WANG Z Q, XU Y J, CHEN T T, et al. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling [J]. Planta, 2015, 241(5): 1091−1107. doi: 10.1007/s00425-015-2245-0
    [24] 李小芳, 张志良. . 植物生理学实验指导[M]. 北京: 高等教育出版社, 2015.
    [25] 王萌, 张海惠, 刘琪, 等. 蚕豆中5种内源激素的高效液相色谱测定 [J]. 甘肃农业大学学报, 2015, 50(6):58−61. doi: 10.3969/j.issn.1003-4315.2015.06.011

    WANG M, ZHANG H H, LIU Q, et al. Stimutaneous determination of five endogenous hormones in Vicia faba by high performance liquid chromatography [J]. Journal of Gansu Agricultural University, 2015, 50(6): 58−61.(in Chinese) doi: 10.3969/j.issn.1003-4315.2015.06.011
    [26] 李港, 彭慧敏, 蔡小东, 等. 5个生姜品种对淹水胁迫的生理响应及耐涝性评价 [J]. 南方农业学报, 2022, 53(8):2196−2204.

    LI G, PENG H M, CAI X D, et al. Physiological response and waterlogging tolerance evaluation of five ginger varieties to waterlogging stress [J]. Journal of Southern Agriculture, 2022, 53(8): 2196−2204.(in Chinese)
    [27] 王玉玲, 周晨浩, 肖金平, 等. 3个桃品种对淹水胁迫的生理响应及耐涝性评价 [J]. 福建农业学报, 2022, 37(1):49−58.

    WANG Y L, ZHOU C H, XIAO J P, et al. Responses and tolerance of three peach cultivars to waterlogging [J]. Fujian Journal of Agricultural Sciences, 2022, 37(1): 49−58.(in Chinese)
    [28] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响 [J]. 麦类作物学报, 2020, 40(6):730−736. doi: 10.7606/j.issn.1009-1041.2020.06.11

    XIANG Y L, FANG Z W, ZHAO J W, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat [J]. Journal of Triticeae Crops, 2020, 40(6): 730−736.(in Chinese) doi: 10.7606/j.issn.1009-1041.2020.06.11
    [29] OZTURK A, AYDIN F. Effect of water stress at various growth stages on some quality characteristics of winter wheat [J]. Journal of Agronomy and Crop Science, 2004, 190(2): 93−99. doi: 10.1046/j.1439-037X.2003.00080.x
    [30] 兰涛, 姜东, 谢祝捷, 等. 花后土壤干旱和渍水对不同专用小麦籽粒品质的影响 [J]. 水土保持学报, 2004, 18(1):193−196. doi: 10.13870/j.cnki.stbcxb.2004.01.051

    LAN T, JIANG D, XIE Z J, et al. Effects of post-anthesis drought and waterlogging on grain quality traits in different specialty wheat varieties [J]. Journal of Soil Water Conservation, 2004, 18(1): 193−196.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2004.01.051
    [31] 郑春芳, 姜东, 蔡剑, 等. 花后盐与渍水逆境对小麦植株钾钠吸收和籽粒淀粉积累的影响 [J]. 生态学报, 2010, 30(17):4756−4764.

    ZHENG C F, JIANG D, CAI J, et al. Post-anthesis salinity and waterlogging and their combination affect uptake of potassium and sodium ions and starch accumulation in grain of wheat [J]. Acta Ecologica Sinica, 2010, 30(17): 4756−4764.(in Chinese)
    [32] REN B Z, ZHANG J W, LI X A, et al. Effects of waterlogging on the yield and growth of summer maize under field conditions [J]. Canadian Journal of Plant Science, 2014, 94(1): 23−31. doi: 10.4141/cjps2013-175
    [33] 朱炜, 龚林忠, 王富荣, 等. 5个桃砧木品种对淹水胁迫的生理响应及耐涝性评价 [J]. 南方农业学报, 2022, 53(10):2937−2945. doi: 10.3969/j.issn.2095-1191.2022.10.026

    ZHU W, GONG L Z, WANG F R, et al. Physiological responses and waterlogging tolerance evaluation of five peach rootstock varieties under waterlogging stress [J]. Journal of Southern Agriculture, 2022, 53(10): 2937−2945.(in Chinese) doi: 10.3969/j.issn.2095-1191.2022.10.026
    [34] 张瑜瑜, 陈泽斌, 用成健, 等. 外源水杨酸处理对蓝莓采后生理及贮藏品质的影响 [J]. 西南农业学报, 2022, 35(1):168−175. doi: 10.16213/j.cnki.scjas.2022.1.022

    ZHANG Y Y, CHEN Z B, YONG C J, et al. Effects of exogenous SA treatment on postharvest physiology and storage quality of blueberries [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 168−175.(in Chinese) doi: 10.16213/j.cnki.scjas.2022.1.022
    [35] ZHOU Z C, LI G, CHAO W, et al. Physiological responses and tolerance evaluation of five poplar varieties to waterlogging [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47(3): 658−667.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-06-01
  • 网络出版日期:  2023-07-16

目录

    /

    返回文章
    返回