• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

普城沙雷氏菌ACCC 02146产灵菌红素调控基因的鉴定

丁霞飞 贾宪波 林陈强 庄振宏 陈济琛

丁霞飞,贾宪波,林陈强,等. 普城沙雷氏菌ACCC 02146产灵菌红素调控基因的鉴定 [J]. 福建农业学报,2023,38(4):485−496 doi: 10.19303/j.issn.1008-0384.2023.04.013
引用本文: 丁霞飞,贾宪波,林陈强,等. 普城沙雷氏菌ACCC 02146产灵菌红素调控基因的鉴定 [J]. 福建农业学报,2023,38(4):485−496 doi: 10.19303/j.issn.1008-0384.2023.04.013
DING X F, JIA X B, LIN C Q, et al. Prodigiosin-producing Genes in Serratia plymuthica ACCC 02146 [J]. Fujian Journal of Agricultural Sciences,2023,38(4):485−496 doi: 10.19303/j.issn.1008-0384.2023.04.013
Citation: DING X F, JIA X B, LIN C Q, et al. Prodigiosin-producing Genes in Serratia plymuthica ACCC 02146 [J]. Fujian Journal of Agricultural Sciences,2023,38(4):485−496 doi: 10.19303/j.issn.1008-0384.2023.04.013

普城沙雷氏菌ACCC 02146产灵菌红素调控基因的鉴定

doi: 10.19303/j.issn.1008-0384.2023.04.013
基金项目: 福建省科技计划公益类专项(2020R1025002);福建省农业科学院科技创新团队建设项目(CXTD2021002-3)
详细信息
    作者简介:

    丁霞飞(1995−),女,硕士,研究方向:生物化学与分子生物学(E-mail:dxf925@163.com

    通讯作者:

    陈济琛(1964−),男,研究员,研究方向:农业微生物(E-mail:chenjichen2001@163.com

  • 中图分类号: Q81

Prodigiosin-producing Genes in Serratia plymuthica ACCC 02146

  • 摘要:   目的  鉴定影响普城沙雷氏菌ACCC 02146产灵菌红素能力的基因,构建ACCC 02146的转座子突变体文库,为进一步研究普城沙雷氏菌ACCC 02146灵菌红素合成机制奠定基础。  方法  采用平板划线法从菌种保藏中心购买菌株和实验室保藏菌株中获得15株产灵菌红素的菌株。采用16S rRNA基因测序法鉴定各菌株,邻接建树将其分类,并比较不同类别菌株灵菌红素合成基因簇启动子序列差异,观察各菌株产色能力。对16S rDNA序列和灵菌红素合成基因簇启动子序列均有异于其他菌株的普城沙雷氏菌ACCC 02146合成灵菌红素的调控基因展开研究。构建ACCC 02146的转座子突变体文库,筛选出产色能力明显改变的克隆子并鉴定出对应的转座子插入突变基因。  结果  该突变体文库中有74个突变体表现出产灵菌红素能力的变化。其中25个突变体转座子插入发生在pigApigBpigCpigDpigH 等5个灵菌红素合成簇基因上,49个突变体转座子插入基因为灵菌红素合成基因簇之外的基因。在鉴定到的产色能力改变的突变体中,麦芽糖O-乙酰基转移酶基因突变菌株有6个,二氢乳清酸脱氢酶基因突变菌株有4个,MarR家族转录因子SlyA基因突变体有3个,winged helix家族的双组分转录调控因子RstA基因突变体有3个,H-醌氧化还原酶亚基I基因突变菌株有3个,NADH-醌氧化还原酶G链基因突变菌株有3个,肽基脯氨酰异构酶B基因突变菌株有3个,其他突变基因对应的克隆子数量为1~2个。  结论  在沙雷氏菌中,除了灵菌红素合成簇基因调控灵菌红素合成,推测灵菌红素合成簇外编码相关酶、转录调控因子和一些结构蛋白的基因通过直接或间接途径在不同程度上调控了灵菌红素的合成。
  • 图  1  菌株系统发育树

    Figure  1.  Phylogenetic tree of Serratia sp.

    图  2  各菌株灵菌红素合成能力比较

    Figure  2.  Prodigiosin synthesis capabilities of Serratia sp.

    图  3  3种不同转录调控因子突变体菌落

    a:突变体F4-4;b:突变体B4-1;c:突变体H8-1。

    Figure  3.  Colonies of 3 type transcriptional regulatory factor mutants

    a: Mutant F4-4; b: Mutant B4-1; c: Mutant H8-1.

    表  1  供试引物

    Table  1.   Primes applied

    引物 Primes序列 Sequences(5′-3′)用途 Purpose来源 Sources
    27FAGAGTTTGATCC TGGCTCAG16S rDNA 测序[23]
    1492RACGGTTACCTTGTTACGACTT16S rDNA 测序[23]
    LAD1ACGATGGACTCCAGAG(G/C/A)N(G/C/A)NNNGGAA高效热不对称交错PCR [24]
    LAD3ACGATGGACTCCAGAG(T/A/C)N(A/G/C)NNNCCAC高效热不对称交错PCR [24]
    AC1ACGATGGACTCCAGAG高效热不对称交错PCR[24]
    F389TCAAGCATTTTATCCGTACTCCTG高效热不对称交错PCR[24]
    F536CGGTTGCATTCGATTCCTGTTTGTA高效热不对称交错PCR [24]
    F772TAGGTTGTATTGATGTTGGACGAG高效热不对称交错PCR [24]
    KproFGCAACACTCCGCAATCTATA菌株ACCC 02146启动子序列本研究
    KproRCTCTATCTCCATGAAAGAGT菌株ACCC 02146启动子序列本研究
    下载: 导出CSV

    表  2  菌落形态特征

    Table  2.   Colony morphology

    菌株编号
    Strain No.
    菌落形态特征
    Colony morphology characteristics
    FZSF02圆形凸起,湿润黏稠,红色
    S1圆形凸起,湿润黏稠,红色
    S2圆形凸起,湿润黏稠,红色
    S3圆形凸起,湿润黏稠,红色
    CICC 23703圆形凸起,湿润黏稠,深红色
    CICC 23838圆形凸起,湿润黏稠,红色
    CICC 24478圆形凸起,表面干燥粗糙,红色
    CICC 10698圆形凸起,湿润黏稠,橙红色
    CICC 20223圆形凸起,湿润黏稠,橙色
    CICC 24369圆形凸起,湿润黏稠,深红色
    CCTCC AB2014323圆形凸起,湿润黏稠,深红色
    CCTCC AB2015384圆形凸起,湿润黏稠,红色
    ACCC 02146圆形凸起,湿润黏稠,橙红色
    ACCC 01294圆形凸起,湿润黏稠,深红色
    ACCC 04168圆形凸起,湿润黏稠,深红色
    下载: 导出CSV

    表  3  突变体产灵菌红素能力及其菌量

    Table  3.   Prodigiosin synthesis capabilities and quantity of S.plymuthica mutant

    基因登录号
    Gene accession number
    突变体(基因长度/插入位点)
    Mutant (gene length/insertion site)/bp
    功能
    Function
    OD600OD600
    改变倍数
    OD600 fold change
    OD535OD535改变倍数
    OD535 fold
    change
    OD535改变倍数/
    OD600改变倍数
    OD535 fold change/
    OD600 fold change
    普城沙雷氏菌 ACCC 02146 2.540 1.000 0.213 1.000 1.000
    AEG27540.1 B5-10 (2 673/1 075), B9-2 (2 673/
    1 274), B6-4 (2 673/1 075), B6-6
    (2 673/792), B5-6 (2 673/792),
    B2-11 (2 673/1 266), B5-9 (2 673/153)
    利用磷酸烯醇式丙酮酸酶(PigC 2.880 1.134↑ 0.005 0.023↓ 0.020
    AEG27539.1 B5-1 (2 601/2 116),B8-1 (2 601/2 096), B7-5 (2 601/1 099), B7-6 (2 601/1 099), B7-11 (2 601/1 338), B9-4 (2 601/2 072), B9-5 (2 601/2 071) 假设蛋白(PigD 2.644 1.041↑ 0.005 0.023↓ 0.022
    AEG27535.1 B7-7 (1 971/1 905), B7-1 (1 971/1 905) 甘氨酸C-乙酰转移酶(PigH 2.600 1.025↑ 0.015 0.070↓ 0.068
    AEG27542.1 B5-12 (1 161/195), B5-13 (1 161/794), B6-8 (1 161/35), B7-8 (1 161/35), B9-1 (1 161/35) 异戊酰基-辅酶A脱氢酶(PigA 2.731 1.075↑ 0.004 0.019↓ 0.02
    AEG27541.1 B5-2 (2 031/1 865), B5-11 (2 031/
    1 865), B6-7 (2 031/1 865), B7-12
    (1 161/35)
    富马酸还原酶/琥珀酸脱氢酶黄蛋白结构域蛋白(PigB 2.665 1.049↑ 0.012 0.056↓ 0.053
    AEG30298.1 F5-7 (558/202), F5-4 (558/524), F5-10 (558/273), F5-5 (558/518), F5-6 (558/495), F5-9 (558/189) 麦芽糖O-乙酰转移酶 2.618 1.031↑ 0.037 0.174↓ 0.169
    AEG29267.1 H8-8 (978/910), H8-9 (978/262), H9-8 (978/217) H-醌氧化还原酶亚基1 2.355 0.927↓ 0.245 1.150↑ 1.241
    AEG27501.1 H7-1 (1 011/842), H7-4 (1 011/425), H9-3 (1 011/378), H9-6 (1 011/234) 二氢乳清酸脱氢酶 1.967 0.774↓ 0.589 2.765↑ 3.572
    AEG29268.1 H9-8 (2 748/217), H7-5 (2 748/2 682), H7-9 (2 748/2 041) NADH-醌氧化还原酶G链 2.216 0.872↓ 0.243 1.140↑ 1.307
    AEG26904.1 B9-3 (495/290), B7-2 (495/290), B7-3 (495/290) 肽基脯氨酰异构酶B 3.827 1.507↑ 0.008 0.038↓ 0.025
    AEG26553.1 H8-12 (1 800/1 017), H7-3 (1 800/1 236) 亚硫酸盐还原酶(NADPH)黄蛋白α组分 2.646 1.042↑ 0.269 1.263↑ 1.212
    AEG29408.1 H9-5 (1 728/1 484), H7-11 (1 728/1 484) 磷酸烯醇丙酮酸蛋白磷酸转移酶Ptsl 2.660 1.047↑ 0.574 2.695↑ 2.574
    AEG29263.1 H8-4 (1 848/189), H9-1 (1 848/853) NADH-醌氧化还原酶亚基L 2.473 0.974↓ 0.231 1.085↑ 1.114
    AEG27032.1 H6-5 (390/192) 琥珀酸脱氢酶,细胞色素b556亚基 1.758 0.692↓ 0.230 1.080↑ 1.561
    AEG29294.1 H9-10 (1 518/1 085) 氨基磷酸核糖转移酶 2.317 0.912↓ 0.273 1.282↑ 1.406
    AEG27629.1 H9-9 (1 047/533) 二氢乳清酸酶 2.164 0.852↓ 0.231 1.085↑ 1.273
    AEG27038.1 H8-3 (1 167/336) 琥珀酰辅酶a合成酶(ADP形成)β亚基 2.230 0.878↓ 0.282 1.324↑ 1.508
    AEG27031.1 H8-5 (1 293/402), H8-2 (1 293/0) 柠檬酸合成酶I 2.052 0.808↓ 0.333 1.563↑ 1.934
    AEG29271.1 H8-7 (1 797/618) NADH-醌氧化还原酶亚基C/D 2.542 1.001↑ 0.293 1.376↑ 1.375
    AEG26076.1 H7-7 (1 284/606) 磷酸核糖胺-甘氨酸连接酶 2.579 1.015↑ 0.239 1.122↑ 1.105
    AEG30581.1 F4-1 (1 785/73) ATP结合蛋白 2.640 1.040↑ 0.052 0.244↓ 0.235
    AEG26238.1 B5-3 (630/624) 假设蛋白ALQ63_03 824 1.416 0.557↓ 0.01 0.047↓ 0.084
    AEG29272.1 H7-6 (675/317) H-醌氧化还原酶亚基K 2.342 0.922↓ 0.285 1.338↑ 1.451
    AEG27034.1 H7-8 (1 710/1 665), H9-7 (1 710 /1 352) 琥珀酸脱氢酶或富马酸还原酶黄蛋白亚基 1.603 0.631↓ 0.055 0.258↓ 0.409
    AEG27939.1 B4-1 (435/109), B6-3 (435/109), B6-5 (435/108) MarR家族转录调控因子SlyA 2.712 1.068↑ 0.006 0.028↓ 0.026
    AEG28365.1 F4-4 (849/38), F4-2 (849/36), F4-3 (849/38) winged helix家族双组分转录调控因子RstA 2.71 1.067↑ 0.039 0.183↓ 0.172
    AEG30425.1 H8-1 (633/262) cAMP激活的全局转录调控因子CRP,转录调控因子Crp/Fnr家族 2.243 0.883↓ 0.860 4.038↑ 4.573
    AEF52 157.1 H7-14 (267/3) FAD装配因子SdhE 2.737 1.078↑ 0.259 1.216↑ 1.128
    AEG27490.1 H7-10 (1 110/1 089) 孔蛋白OmpC 1.460 0.575↓ 0.585 2.746↑ 4.776
    AEG26866.1 F5-12 (1 188/864) 多药外排RND转运蛋白质周适配器亚单位SdeX 2.910 1.146↑ 0.022 0.103↓ 0.090
    AEG29409.1 H3-1 (510/364) 葡萄糖转运蛋白亚基IIA_ 2.234 0.880↓ 0.051 0.239↓ 0.272
    下划线标注的为代表性突变体;“↑”代表升高;“↓”代表降低。
    Underline indicates mutant; "↑" indicates elevation; "↓" indicates decline.
    下载: 导出CSV
  • [1] PANDEY R, CHANDER R, SAINIS K B. A novel prodigiosin-like immunosuppressant from an alkalophilic Micrococcus sp. [J]. International Immunopharmacology, 2003, 3(2): 159−167. doi: 10.1016/S1567-5769(02)00114-5
    [2] 朱雄伟, 徐智鹏, 张楠, 等. 粘质沙雷氏菌代谢产物灵菌红素的鉴定 [J]. 化学与生物工程, 2012, 29(11):80−82.

    ZHU X W, XU Z P, ZHANG N, et al. Identification of metabolite prodigiosin of Serratia marcescens [J]. Chemistry & Bioengineering, 2012, 29(11): 80−82.(in Chinese)
    [3] 袁保红, 杜青平, 蔡创华, 等. 海洋细菌Pseudomonas sp. 色素的提取及稳定性的研究 [J]. 海洋通报, 2005, 24(6):92−96.

    YUAN B H, DU Q P, CAI C H, et al. Study on the extraction and stability of pigments from a marine bacterium Pseudomonas sp [J]. Marine Science Bulletin, 2005, 24(6): 92−96.(in Chinese)
    [4] 傅奇. 灵菌红素产生菌的筛选鉴定及其发酵条件优化[D]. 南昌: 南昌大学, 2011.

    FU Q. Screening and identification of prodigiosin-producing bacteria and optimization of fermentation conditions[D]. Nanchang: Nanchang University, 2011. (in Chinese)
    [5] JÉRSIA ARAÚJO A, MARINHO FILHO J D B, SOUSA T S, et al. Evidences for the involvement of HER on prodigiosin anticancer effects [J]. Planta Medica, 2012, 78(11): 78−92.
    [6] ZHAO C, QIU S Z, HE J, et al. Prodigiosin impairs autophagosome-lysosome fusion that sensitizes colorectal cancer cells to 5-fluorouracil-induced cell death [J]. Cancer Letters, 2020, 481: 15−23. doi: 10.1016/j.canlet.2020.03.010
    [7] D'ALESSIO R, BARGIOTTI A, CARLINI O, et al. Synthesis and immunosuppressive activity of novel prodigiosin derivatives [J]. Journal of Medicinal Chemistry, 2000, 43(13): 2557−2565. doi: 10.1021/jm001003p
    [8] 王玉洁, 孙诗清, 朱长俊, 等. 天然红色素灵菌红素的抗菌性能及应用 [J]. 天然产物研究与开发, 2012, 24(11):1626−1629,1654. doi: 10.3969/j.issn.1001-6880.2012.11.027

    WANG Y J, SUN S Q, ZHU C J, et al. Antibacterial property and application of natural red pigment prodigiosin [J]. Natural Product Research and Development, 2012, 24(11): 1626−1629,1654.(in Chinese) doi: 10.3969/j.issn.1001-6880.2012.11.027
    [9] NAKASHIMA T, YAMAGUCHI K, ODA T, et al. Evaluation of the anti-Trichophyton activity of a prodigiosin analogue produced by γ-proteobacterium, using stratum corneum epidermis of the Yucatan micropig [J]. Journal of Infection and Chemotherapy, 2005, 11(3): 123−128. doi: 10.1007/s10156-005-0376-0
    [10] KANCHARLA P, LI Y X, YELUGURI M, et al. Total synthesis and antimalarial activity of 2-(p-hydroxybenzyl)-prodigiosins, isoheptylprodigiosin, and geometric isomers of tambjamine MYP1 isolated from marine bacteria [J]. Journal of Medicinal Chemistry, 2021, 64(12): 8739−8754. doi: 10.1021/acs.jmedchem.1c00748
    [11] GENES C, BAQUERO E, ECHEVERRI F, et al. Mitochondrial dysfunction in Trypanosoma cruzi: The role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease [J]. Parasites & Vectors, 2011, 4(1): 66.
    [12] KRAMAR A, ILIC-TOMIC T, PETKOVIC M, et al. Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing [J]. World Journal of Microbiology and Biotechnology, 2014, 30(8): 2231−2240. doi: 10.1007/s11274-014-1644-x
    [13] JEONG H, YIM J H, LEE C, et al. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent [J]. Nucleic Acids Research, 2005, 33(22): 7066−7073. doi: 10.1093/nar/gki1016
    [14] ZHANG H J, WANG H, ZHENG W, et al. Toxic effects of prodigiosin secreted by Hahella sp. KA22 on harmful Alga Phaeocystis globosa [J]. Frontiers in Microbiology, 2017, 8: 999. doi: 10.3389/fmicb.2017.00999
    [15] WILLIAMS R P, GOLDSCHMIDT M E, GOTT C L. Inhibition by temperature of the terminal step in biosynthesis of prodigiosin [J]. Biochemical and Biophysical Research Communications, 1965, 19(2): 177−181. doi: 10.1016/0006-291X(65)90500-0
    [16] ZHANG F, WEI Q E, TONG H, et al. Crystal structure of MBP-PigG fusion protein and the essential function of PigG in the prodigiosin biosynthetic pathway in Serratia marcescens FS14 [J]. International Journal of Biological Macromolecules, 2017, 99: 394−400. doi: 10.1016/j.ijbiomac.2017.02.088
    [17] PAN X W, SUN C H, TANG M, et al. LysR-type transcriptional regulator MetR controls prodigiosin production, methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, and exopolysaccharide synthesis in Serratia marcescens [J]. Applied and Environmental Microbiology, 2020, 86(4): e02241−e02219.
    [18] WEI Y H, CHEN W C. Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies [J]. Journal of Bioscience and Bioengineering, 2005, 99(6): 616−622. doi: 10.1263/jbb.99.616
    [19] KHAYYAT AHDAB N, ABBAS HISHAM A, KHAYAT MAAN T, et al. Secnidazole is a promising imidazole mitigator of Serratia marcescens virulence [J]. Microorganisms, 2021, 9(11): 2333. doi: 10.3390/microorganisms9112333
    [20] SHANKS R M Q, STELLA N A, LAHR R M, et al. Suppressor analysis of eepR mutant defects reveals coordinate regulation of secondary metabolites and serralysin biosynthesis by EepR and HexS [J]. Microbiology (Reading, England), 2017, 163(2): 280−288. doi: 10.1099/mic.0.000422
    [21] LEE C M, MONSON R E, ADAMS R M, et al. The LacI-family transcription factor, RbsR, is a pleiotropic regulator of motility, virulence, siderophore and antibiotic production, gas vesicle morphogenesis and flotation in Serratia [J]. Frontiers in Microbiology, 2017, 8: 1678. doi: 10.3389/fmicb.2017.01678
    [22] GRISTWOOD T, MCNEIL M B, CLULOW J S, et al. PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules [J]. Journal of Bacteriology, 2011, 193(5): 1076−1085. doi: 10.1128/JB.00352-10
    [23] 刘径, 张珂恒, 曾永三. 昆虫病原线虫Oscheius myriophila共生细菌菌株B1的分离与鉴定 [J]. 广东农业科学, 2016, 43(3):111−115.

    LIU J, ZHANG K H, ZENG Y S. Isolation and identification of a symboiotic bacterial strain (B1) from an entomopathogenic nematode, Oscheius myriophila [J]. Guangdong Agricultural Sciences, 2016, 43(3): 111−115.(in Chinese)
    [24] JIA X B, LIN X J, CHEN J C. Linear and exponential TAIL-PCR: A method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites [J]. AMB Express, 2017, 7(1): 195. doi: 10.1186/s13568-017-0495-x
    [25] LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649−656.
    [26] JIA X B, LIU F C, ZHAO K, et al. Identification of essential genes associated with prodigiosin production in Serratia marcescens FZSF02 [J]. Frontiers in Microbiology, 2021, 12: 705853. doi: 10.3389/fmicb.2021.705853
    [27] 刘方晨, 贾宪波, 吴良泉, 等. 黏质沙雷氏菌灵菌红素合成基因簇异源表达及其潜在的温度调控机制 [J]. 福建农业学报, 2021, 36(3):337−344.

    LIU F C, JIA X B, WU L Q, et al. Heterologous expression and temperature regulation of prodigiosin-synthesis gene cluster in Serratia marcecens [J]. Fujian Journal of Agricultural Sciences, 2021, 36(3): 337−344.(in Chinese)
    [28] WEATHERSPOON-GRIFFIN N, YANG D Z, KONG W, et al. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide [J]. The Journal of Biological Chemistry, 2014, 289(47): 32571−32582. doi: 10.1074/jbc.M114.565762
    [29] GRISTWOOD T, FINERAN P C, EVERSON L, et al. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate [J]. BMC Microbiology, 2009, 9: 112. doi: 10.1186/1471-2180-9-112
    [30] STELLA N A, LAHR R M, BROTHERS K M, et al. Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites [J]. Journal of Bacteriology, 2015, 197(15): 2468−2478. doi: 10.1128/JB.00136-15
    [31] HORNG Y T, CHANG K C, LIU Y N, et al. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens [J]. International Journal of Medical Microbiology, 2010, 300(5): 304−312. doi: 10.1016/j.ijmm.2010.01.003
    [32] FINERAN P C, SLATER H, EVERSON L, et al. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: Integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production [J]. Molecular Microbiology, 2005, 56(6): 1495−1517. doi: 10.1111/j.1365-2958.2005.04660.x
    [33] QIU S S, JIA S S, ZHANG F, et al. Two component system CpxR/a regulates the prodigiosin biosynthesis by negative control in Serratia marcescens FS14 [J]. Biochemical and Biophysical Research Communications, 2021, 579: 136−140. doi: 10.1016/j.bbrc.2021.09.050
    [34] LI Y Q, CEN P L, CHEN S F, et al. A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor [J]. Journal of Zhejiang University-SCIENCE A, 2004, 5(2): 173−179. doi: 10.1631/jzus.2004.0173
    [35] WILLIAMSON N R, FINERAN P C, OGAWA W, et al. Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia [J]. Environmental Microbiology, 2008, 10(5): 1202−1217. doi: 10.1111/j.1462-2920.2007.01536.x
    [36] 张亚. 粘质沙雷氏菌BaeS胞外感受器结构域晶体结构及双组份系统BaeS/R功能的研究[D]. 南京: 南京农业大学, 2016.

    ZHANG Y. Study on crystal structure of BaeS extracellular receptor domain of Serratia marcescens and BaeS/R function of two-component system[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
    [37] 贾宪波, 刘方晨, 赵恪, 等. 粘质沙雷氏菌FZSF02中转录调控因子OmpR的生物学功能 [J]. 福建农业学报, 2021, 36(12):1491−1498.

    JIA X B, LIU F C, ZHAO K, et al. Biological functions of transcription factor OmpR in Serratia marcescens FZSF02 [J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1491−1498.(in Chinese)
    [38] LERY L M S, GOULART C L, FIGUEIREDO F R, et al. A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance [J]. Journal of Proteomics, 2013, 86: 1−15. doi: 10.1016/j.jprot.2013.04.038
    [39] HARRIS A K P, WILLIAMSON N R, SLATER H, et al. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation[J]. Microbiology (Reading, England), 2004, 150(Pt 11): 3547-3560.
    [40] THOMSON N R, COX A, BYCROFT B W, et al. The Rap and Hor proteins of Erwinia, Serratia and Yersinia: A novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens [J]. Molecular Microbiology, 1997, 26(3): 531−544. doi: 10.1046/j.1365-2958.1997.5981976.x
    [41] XIANG T T, ZHOU W, XU C L, et al. Transcriptomic analysis reveals competitive growth advantage of non-pigmented Serratia marcescens mutants [J]. Frontiers in Microbiology, 2022, 12: 793202. doi: 10.3389/fmicb.2021.793202
    [42] GREEN J, SCOTT C, GUEST J R. Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP[M]//Advances in Microbial Physiology. Amsterdam: Elsevier, 2001: 1-34.
    [43] SUN D, ZHOU X G, LIU C, et al. Fnr negatively regulates prodigiosin synthesis in Serratia sp. ATCC 39006 during aerobic fermentation [J]. Frontiers in Microbiology, 2021, 12: 734854. doi: 10.3389/fmicb.2021.734854
    [44] 刘星, 王希东, 刘君. 西瓜食酸菌RND蛋白家族外排转运体cusB基因抗铜功能研究 [J]. 微生物学通报, 2016, 43(1):97−106.

    LIU X, WANG X D, LIU J. Functional analysis of a RND family effiux transporter component-cusB gene associated with copper resistance in Acidovorax citrulli [J]. Microbiology China, 2016, 43(1): 97−106.(in Chinese)
    [45] GRISTWOOD T, FINERAN P C, EVERSON L, et al. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006 [J]. Molecular Microbiology, 2008, 69(2): 418−435. doi: 10.1111/j.1365-2958.2008.06291.x
    [46] MCNEIL M B, CLULOW J S, WILF N M, et al. SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria [J]. Journal of Biological Chemistry, 2012, 287(22): 18418−18428. doi: 10.1074/jbc.M111.293803
    [47] ESCHENBRENNER M, COVÈS J, FONTECAVE M. The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli [J]. Journal of Biological Chemistry, 1995, 270(35): 20550−20555. doi: 10.1074/jbc.270.35.20550
    [48] RADZIG M A, KOKSHAROVA O A, KHMEL’ I A. Antibacterial effects of silver ions on growth of gram-negative bacteria and biofilm formation [J]. Molecular Genetics, Microbiology and Virology, 2009, 24(4): 194−199. doi: 10.3103/S0891416809040065
    [49] BEGIC S, WOROBEC E A. Site-directed mutagenesis studies to probe the role of specific residues in the external loop (L3) of OmpF and OmpC porins in susceptibility of Serratia marcescens to antibiotics [J]. Canadian Journal of Microbiology, 2007, 53(6): 710−719. doi: 10.1139/W07-018
    [50] BRANDT U. Energy converting NADH: Quinone oxidoreductase (complex I) [J]. Annual Review of Biochemistry, 2006, 75: 69−92. doi: 10.1146/annurev.biochem.75.103004.142539
    [51] SCHULER F, YANO T, DI BERNARDO S, et al. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron–sulfur cluster N2 to quinone [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 4149−4153. doi: 10.1073/pnas.96.7.4149
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  123
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2023-03-01
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回