• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热解温度下番茄藤蔓生物炭的理化特性分析

任丽花 邹秀凤 黄家庆 叶菁 王义祥

任丽花,邹秀凤,黄家庆,等. 不同热解温度下番茄藤蔓生物炭的理化特性分析 [J]. 福建农业学报,2024,39(2):1−9
引用本文: 任丽花,邹秀凤,黄家庆,等. 不同热解温度下番茄藤蔓生物炭的理化特性分析 [J]. 福建农业学报,2024,39(2):1−9
REN L H, ZOU X F, HUANG J Q, et al. Analysis of physicochemical properties of tomato vine biochar under different pyrolysis temperatures [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−9
Citation: REN L H, ZOU X F, HUANG J Q, et al. Analysis of physicochemical properties of tomato vine biochar under different pyrolysis temperatures [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−9

不同热解温度下番茄藤蔓生物炭的理化特性分析

基金项目: 福建省红壤山地农业生态过程重点实验室开放课题(Aephrs-202101);中央引导地方科技发展专项(2021L3021);福建省农业高质量发展超越“ 5511”协同创新工程项目(XTCXGC2021010)
详细信息
    作者简介:

    任丽花 (1977 —),女,博士,助理研究员,主要从事环境微生物、农业环境与生态修复方面的研究,E-mail:1272547936@qq.com

    通讯作者:

    王义祥(1978 —),男,博士,研究员,主要从事农业废弃物资源化利用研究,E-mail:sd_wolong@163.com

  • 中图分类号: TS959.2; S641.2

Analysis of physicochemical properties of tomato vine biochar under different pyrolysis temperatures

  • 摘要:   目的  探究裂解温度对番茄藤蔓生物炭理化特性的影响。  方法  通过 300 ℃、500 ℃ 和 700 ℃下热解2 h制备生物炭,运用电镜扫描、元素分析仪和傅里叶变换红外光谱分析仪等手段,对番茄藤蔓生物炭的表面结构表征、元素及其他特性、表面官能团等进行综合分析。  结果  裂解法制备的番茄藤蔓生物炭呈碱性(pH值范围9.83~10.67),生物炭产率随裂解温度的升高而降低,灰分则相反。全氮含量以500 ℃时最低,300 ℃时最高,但固定碳含量、碳氮比(C/N比)均在500 ℃时含量相对较高,分别为51.42%和36.63。低温裂解时番茄藤蔓生物炭孔隙结构丰富,高温下裂解其孔隙被灰分及其熔融结构覆盖,孔隙度减小。热解温度的升高同时使生物炭芳香化程度增强,700 ℃高温热解时的傅里叶红外光谱图相较于300 ℃和500 ℃谱图吸收峰减少,尤其在500~800 cm−1的吸收峰明显减弱。  结论  热裂解改变了番茄藤蔓生物炭的理化特性和微观结构,综合考虑各因素,300~500 ℃下裂解2 h制备的番茄生物炭具有较好的性能和较高的效益。
  • 图  1  不同热解温度下制备的番茄藤蔓生物炭的形态结构扫描照片

    Figure  1.  SEM images of biochars derived from tomato vine under different pyrolytic temperatures

    图  2  番茄藤蔓生物炭的功能基团分布

    Figure  2.  The functional-group distribution of biochars produced by tomato vine

    表  1  不同热解温度下制备的番茄藤蔓生物炭特征参数

    Table  1.   Characteristics of biochars from tomato vine under different pyrolytic temperatures

    热解温度 300 ℃ 500 ℃ 700 ℃
    产率 Productivity/% 46.19±0.26 a 34.11±0.95 b 29.00±0.10 c
    灰分 Ash content/% 18.37±0.86 c 21.53±0.62 b 27.58±0.61 a
    挥发分 Volatile/% 36.68±0.98 a 27.05±2.33 b 27.87±0.57 b
    pH值 pH value 9.83±0.07 c 10.67±0.03 a 10.03±0.06 b
    电导率 Electrical conductivity/(µS·cm−1) 11.02±0.04 c 11.90±0.06 a 11.48±0.05 b
    全氮 Total nitrogen/% 1.91±0.01 a 1.63±0.01 c 1.85±0.01 b
    固定碳 Fixed carbon/% 44.94±1.33 b 51.42±2.81 a 44.54±1.03 b
    有机碳 Organic carbon/% 59.94±0.34 a 59.71±0.39 a 56.51±0.00 b
    C/N比 C/N ration 31.38±0.05 b 36.63±0.23 a 30.57±0.19 c
    同行数字后不同小写字母表示不同处理之间差异显著(P<0.05)。
    Different lowercase letters after the same line of numbers indicate significant differences between different processing(P<0.05).
    下载: 导出CSV
  • [1] YANG J W, LIANG B, ZHANG Y M, et al. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites [J]. BMC Biology, 2022, 20(1): 120. doi: 10.1186/s12915-022-01327-x
    [2] 曾晓娟, 张驰, 何艳清, 等. 基于1980—2019年FAO数据的世界番茄生产状况分析 [J]. 湖南农业科学, 2021, (11):104−108.

    ZENG X J, ZHANG C, HE Y Q, et al. Analysis of world tomato production based on FAO data from 1980 to 2019 [J]. Hunan Agricultural Sciences, 2021(11): 104−108. (in Chinese)
    [3] 我国西红柿行业现状栽培面积、产量及出口量呈增长态势市场走向多元化发展. 观研报告网[EB/OL]. [2022-09-29].https://www. chinabaogao. com/detail/611309. html
    [4] 韩雪, 常瑞雪, 杜鹏祥, 等. 不同蔬菜种类的产废比例及性状分析 [J]. 农业资源与环境学报, 2015, 32(4):377−382.

    HAN X, CHANG R X, DU P X, et al. Straw coefficient and properties of different vegetable wastes [J]. Journal of Agricultural Resources and Environment, 2015, 32(4): 377−382. (in Chinese)
    [5] 张飞雪, 周利利, 周肖瑜, 等. 我国番茄秸秆废弃物资源化利用研究进展 [J]. 蔬菜, 2023, (2):28−32.

    ZHANG F X, ZHOU L L, ZHOU X Y, et al. Research progress on resource utilization of tomato straw waste in China [J]. Vegetables, 2023(2): 28−32. (in Chinese)
    [6] 余亚琳, 胡静, 樊兆博, 等. 设施菜田夏季闷棚对还田秸秆矿化和CO2排放的影响 [J]. 安徽农业科学, 2020, 48(2):81−84,92. doi: 10.3969/j.issn.0517-6611.2020.02.023

    YU Y L, HU J, FAN Z B, et al. Effect of stuffy shed on mineralization and CO2 emission of returning straw in greenhouse vegetable field in summer [J]. Journal of Anhui Agricultural Sciences, 2020, 48(2): 81−84,92. (in Chinese) doi: 10.3969/j.issn.0517-6611.2020.02.023
    [7] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269−3282. doi: 10.1016/j.envpol.2011.07.023
    [8] 郝树芹, 陈强, 丁超武, 等. 设施番茄秸秆还田关键技术及其在黄瓜优质高产栽培中的应用 [J]. 中国瓜菜, 2023, 36(2):112−116. doi: 10.3969/j.issn.1673-2871.2023.02.019

    HAO S Q, CHEN Q, DING C W, et al. Key techniques of tomato straw returning in greenhouse and its application in cucumber high-quality and high-yield cultivation [J]. China Cucurbits and Vegetables, 2023, 36(2): 112−116. (in Chinese) doi: 10.3969/j.issn.1673-2871.2023.02.019
    [9] 耿凤展, 李荣华, 高波, 等. 番茄秸秆高温堆肥作为番茄育苗基质的循环利用研究 [J]. 中国土壤与肥料, 2016, (1):102−106. doi: 10.11838/sfsc.20160118

    GENG F Z, LI R H, GAO B, et al. Composting of tomato residues and cow dung under the aerobic condition and its recyclable potential in tomato nursery seedling [J]. Soil and Fertilizer Sciences in China, 2016(1): 102−106. (in Chinese) doi: 10.11838/sfsc.20160118
    [10] DOMINGO J L, NADAL M. Domestic waste composting facilities: A review of human health risks [J]. Environment International, 2009, 35(2): 382−389. doi: 10.1016/j.envint.2008.07.004
    [11] 朱屹, 李俊良, 焦博, 等. 整合宏组学方法研究番茄与玉米秸秆共堆肥生境中的关键微生物及其功能 [J]. 福建农业学报, 2020, 35(7):764−772.

    ZHU Y, LI J L, JIAO B, et al. Functional microorganisms in tomato stalks/maize straws co-compost unveiled by integrated meta-omics [J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 764−772. (in Chinese)
    [12] 时振宇, 陈健, 贾凯, 等. 番茄秸秆复合基质对温室黄瓜生长、产量及果实品质的影响 [J]. 新疆农业科学, 2020, 57(1):78−85.

    SHI Z Y, CHEN J, JIA K, et al. Effects of tomato straw composite substrate on growth, yield and fruit quality of cucumber in greenhouses [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 78−85. (in Chinese)
    [13] 陈羚, 邹永杰, 董保成. 农业设施种植废弃物厌氧集中处理适用性研究 [J]. 中国沼气, 2018, 36(6):32−35. doi: 10.3969/j.issn.1000-1166.2018.06.006

    CHEN L, ZOU Y J, DONG B C. Applicability of Anaerobic Centralized Treatment for Plant Waste form Agricultural Facility [J]. China Biogas, 2018, 36(6): 32−35. (in Chinese) doi: 10.3969/j.issn.1000-1166.2018.06.006
    [14] CLARE A, SHACKLEY S, JOSEPH S, et al. Competing uses for China’s straw: The economic and carbon abatement potential of biochar [J]. GCB Bioenergy, 2015, 7(6): 1272−1282. doi: 10.1111/gcbb.12220
    [15] 朱启林, 曹明, 张雪彬, 等. 不同热解温度下禾本科植物生物炭理化特性分析 [J]. 生物质化学工程, 2021, 55(4):21−28. doi: 10.3969/j.issn.1673-5854.2021.04.004

    ZHU Q L, CAO M, ZHANG X B, et al. Physicochemical and infrared spectroscopic properties of Gramineae plants biochar at different pyrolysis temperatures [J]. Biomass Chemical Engineering, 2021, 55(4): 21−28. (in Chinese) doi: 10.3969/j.issn.1673-5854.2021.04.004
    [16] CHANDRA S, BHATTACHARYA J. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils [J]. Journal of Cleaner Production, 2019, 215: 1123−1139. doi: 10.1016/j.jclepro.2019.01.079
    [17] CAO G L, ZHANG X Y, ZHENG F C. Inventory of black carbon and organic carbon emissions from China [J]. Atmospheric Environment, 2006, 40(34): 6516−6527. doi: 10.1016/j.atmosenv.2006.05.070
    [18] PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in Southern China [J]. Soil and Tillage Research, 2011, 112(2): 159−166. doi: 10.1016/j.still.2011.01.002
    [19] 曹丽花, 连玉珍, 刘合满. 基于文献计量的秸秆生物炭研究进展 [J]. 安徽农业科学, 2023, 51(4):225−228,252. doi: 10.3969/j.issn.0517-6611.2023.04.054

    CAO L H, LIAN Y Z, LIU H M. Research progress of straw biochar based on bibliometrics [J]. Journal of Anhui Agricultural Sciences, 2023, 51(4): 225−228,252. (in Chinese) doi: 10.3969/j.issn.0517-6611.2023.04.054
    [20] ZHOU Y Y, BAI Z Y, YANG X Y, et al. In-situ grown NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(3): 515−524. doi: 10.1007/s12613-022-2496-2
    [21] KAUR P, SHARMA N, KAUR K. Influence of pyrolysis temperature on rice straw biochar properties and corresponding effects on dynamic changes in bispyribac-sodium adsorption and leaching behavior in soil [J]. Pedosphere, 2023, 33(3): 463−478. doi: 10.1016/j.pedsph.2022.06.046
    [22] YUAN R, SI T R, LU Q Q, et al. Rape straw biochar enhanced Cd immobilization in flooded paddy soil by promoting Fe and sulfur transformation [J]. Chemosphere, 2023, 339: 139652. doi: 10.1016/j.chemosphere.2023.139652
    [23] 徐洋, 任奕林, 王浩杰, 等. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价 [J]. 浙江农业学报, 2023, 35(4):893−902. doi: 10.3969/j.issn.1004-1524.2023.04.16

    XU Y, REN Y L, WANG H J, et al. Comprehensive evaluation of rape straw biochar as slow-release carrier under different preparation conditions [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 893−902. (in Chinese) doi: 10.3969/j.issn.1004-1524.2023.04.16
    [24] ZHAO X C, OUYANG W, HAO F H, et al. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine [J]. Bioresource Technology, 2013, 147: 338−344. doi: 10.1016/j.biortech.2013.08.042
    [25] 黄华, 王雅雄, 唐景春, 等. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能 [J]. 环境科学, 2014, 35(5):1884−1890.

    HUANG H, WANG Y X, TANG J C, et al. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene [J]. Environmental Science, 2014, 35(5): 1884−1890. (in Chinese)
    [26] 张璐, 贾丽, 陆文龙, 等. 不同碳化温度下玉米秸秆生物炭的结构性质及其对氮磷的吸附特性 [J]. 吉林大学学报(理学版), 2015, 53(4):802−808.

    ZHANG L, JIA L, LU W L, et al. Structural properties of corn straw biochar and characteristics of its adsorption for nitrogen and phosphate at different carbonization temperature [J]. Journal of Jilin University (Science Edition), 2015, 53(4): 802−808. (in Chinese)
    [27] TAN G Q, LIU Y, XIAO D. Influence of different pyrolysis methods on the sorption property of rice straw biochar [J]. Separation Science and Technology, 2019, 54(17): 2773−2782. doi: 10.1080/01496395.2018.1553981
    [28] 张春燕. 植物生物炭制备、性能及其对作物生长影响研究[D]. 南京: 南京农业大学, 2018.

    ZHANG C Y. Study on biochar preparation based from plant-type and its effect on crop growth[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
    [29] 孙玲, 贾明云, 刘壮壮, 等. 不同热解温度和升温速率下杨树枝条生物质炭产率和理化性质分析 [J]. 植物资源与环境学报, 2023, 32(3):71−82,91. doi: 10.3969/j.issn.1674-7895.2023.03.08

    SUN L, JIA M Y, LIU Z Z, et al. Analyses on yield and physicochemical properties of poplar branch biochars at different pyrolysis temperatures and heating rates [J]. Journal of Plant Resources and Environment, 2023, 32(3): 71−82,91. (in Chinese) doi: 10.3969/j.issn.1674-7895.2023.03.08
    [30] 中华人民共和国农业农村部. 生物炭检测方法通则: NY/T 3672—2020[S]. 北京: 中国农业出版社, 2020.https://www.chinesestandard.net/China/Chinese.aspx/NYT3672-2020.
    [31] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 147-149.
    [32] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016.
    [33] 王德胜, 何振, 冯勇, 等. 南疆棉秆生物炭的制备及理化特性分析 [J]. 塔里木大学学报, 2018, 30(1):124−131. doi: 10.3969/j.issn.1009-0568.2018.01.016

    WANG D S, HE Z, FENG Y, et al. The preparation and physicochemical properties of cotton stalk biochar has been studied in southern Xinjiang [J]. Journal of Tarim University, 2018, 30(1): 124−131. (in Chinese) doi: 10.3969/j.issn.1009-0568.2018.01.016
    [34] 陈心想, 耿增超. 生物质炭在农业上的应用 [J]. 西北农林科技大学学报(自然科学版), 2013, 41(2):167−174.

    CHEN X X, GENG Z C. Application of biochar in agriculture [J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 167−174. (in Chinese)
    [35] 徐亮, 王豹祥, 汪健, 等. 不同热解温度制备的水稻秸秆生物炭理化特性分析 [J]. 土壤通报, 2020, 51(1):136−143.

    XU L, WANG B X, WANG J, et al. Physical and chemical properties of carbonized rice-straw prepared at different temperatures [J]. Chinese Journal of Soil Science, 2020, 51(1): 136−143. (in Chinese)
    [36] DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243−248. doi: 10.1016/j.jaap.2004.07.003
    [37] Johannes L, Stephen J. Biochar for environmental management: An introduction[J]. Biochar for environmental management Science & Technology, 2009, 25, 15801-15811.
    [38] 闫郑方, 张嵚, 余鑫, 等. 秸秆生物炭的特性及其在重金属污染农田中的应用 [J]. 湖南师范大学自然科学学报, 2023, 46(1):38−47.

    YAN Z F, ZHANG Q, YU X, et al. Characteristics of straw biochar and its application in heavy metal-contaminated farmland [J]. Journal of Natural Science of Hunan Normal University, 2023, 46(1): 38−47. (in Chinese)
    [39] 黄康. 不同热解温度秸秆生物炭还田培肥土壤及其固碳潜力的研究[D]. 武汉: 华中农业大学, 2022

    HUANG K. Study on soil fertilization and carbon sequestration potential of different pyrolysis temperature biochar returning[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
    [40] 吴行, 王秀斌, 郑琴, 等. 水滑石改性生物炭有效提高设施菜田土壤磷的吸附性能 [J]. 植物营养与肥料学报, 2022, 28(9):1652−1663. doi: 10.11674/zwyf.2021687

    WU H, WANG X B, ZHENG Q, et al. Hydrotalcite-modified biochar effectively improves phosphorus adsorption capacity in greenhouse vegetable soil [J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1652−1663. (in Chinese) doi: 10.11674/zwyf.2021687
    [41] 冯诗慧, 孙正一, 张金硕, 等. 热解温度对生物炭循环伏安曲线特性的影响 [J]. 环境化学, 2021, 40(3):828−833. doi: 10.7524/j.issn.0254-6108.2020021902

    FENG S H, SUN Z Y, ZHANG J S, et al. Effect of carbonization temperature on the cycle voltammetry characteristics of biochar [J]. Environmental Chemistry, 2021, 40(3): 828−833. (in Chinese) doi: 10.7524/j.issn.0254-6108.2020021902
    [42] 刘铭轩. 活性炭研究进展及展望 [J]. 内蒙古石油化工, 2017, 43(3):35−36. doi: 10.3969/j.issn.1006-7981.2017.03.012

    LIU M X. Research progress and prospect of activated carbon [J]. Inner Mongolia Petrochemical Industry, 2017, 43(3): 35−36. (in Chinese) doi: 10.3969/j.issn.1006-7981.2017.03.012
    [43] 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望 [J]. 作物学报, 2021, 47(1):1−18. doi: 10.3724/SP.J.1006.2021.02021

    ZHANG W M, XIU L Q, WU D, et al. Review of biochar structure and physicochemical properties [J]. Acta Agronomica Sinica, 2021, 47(1): 1−18. (in Chinese) doi: 10.3724/SP.J.1006.2021.02021
    [44] 张昌天, 郭建华, 王龙, 等. 生物炭裂解温度和施用水平对土壤导水率的影响 [J]. 江苏农业科学, 2020, 48(6):209−214.

    ZHANG C T, GUO J H, WANG L, et al. Influences of biochar pyrolysis temperature and application level on soil hydraulic conductivity [J]. Jiangsu Agricultural Sciences, 2020, 48(6): 209−214. (in Chinese)
    [45] CHEN W F, MENG J, HAN X R, et al. Past, present, and future of biochar [J]. Biochar, 2019, 1(1): 75−87. doi: 10.1007/s42773-019-00008-3
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 录用日期:  2024-02-05
  • 修回日期:  2023-12-11
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回