• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马尾松和米槠林下外生菌根真菌对宿主的选择性研究

张小慧 谢荣樟 张锦燕 满家银 孙代珍 邓宗杰 魏丽花 练春兰

张小慧,谢荣樟,张锦燕,等. 马尾松和米槠林下外生菌根真菌对宿主的选择性研究 [J]. 福建农业学报,2024,39(X):1−13
引用本文: 张小慧,谢荣樟,张锦燕,等. 马尾松和米槠林下外生菌根真菌对宿主的选择性研究 [J]. 福建农业学报,2024,39(X):1−13
ZHANG X H, XIE R Z, ZHANG J Y, et al. Study on host selectivity of ectomycorrhizal fungi under Pinus massoniana and Castanopsis carlesii forests [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−13
Citation: ZHANG X H, XIE R Z, ZHANG J Y, et al. Study on host selectivity of ectomycorrhizal fungi under Pinus massoniana and Castanopsis carlesii forests [J]. Fujian Journal of Agricultural Sciences,2024,39(X):1−13

马尾松和米槠林下外生菌根真菌对宿主的选择性研究

基金项目: 福建省自然科学基金项目(KJD21006A)
详细信息
    作者简介:

    张小慧(1999 —),女,硕士研究生,主要从事森林保护工程研究,E-mail:m15059255681@163.com

    通讯作者:

    练春兰(1965 —),女,博士,教授,主要从事森林保护工程研究,E-mail:chunlan@g.ecc.u-tokyo.ac.jp

  • 中图分类号: S 714

Study on host selectivity of ectomycorrhizal fungi under Pinus massoniana and Castanopsis carlesii forests

  • 摘要:   目的  外生菌根(Ectomycorrhiza,ECM)是外生菌根真菌(Ectomycorrhizal fungi,ECMF)与植物在漫长的进化过程中相互选择所形成的互惠共生体,本研究拟探究在共生过程中ECMF对宿主的选择性。  方法  采用不同的土壤菌源(马尾松土壤Pinus massoniana soil,PmS和米槠土壤Castanopsis carlesii soil,CcS),分别对马尾松(Pinus massoniana,Pm)和鳞苞锥(Castanopsis uraiana,Cu)进行接种试验(Pm-PmS、Pm-CcS、Cu-PmS、Cu-CcS)。培育6个月后,采用ITS进行菌根鉴定,检测并计算不同土壤菌源下马尾松和鳞苞锥根中ECM出现的频率、侵染率、相对丰度、相对频率、丰富度和多样性,并测定苗木生长指标以及土壤理化性质。  结果  米槠土壤pH值、全磷含量、全碳含量、有效磷含量显著高于马尾松土壤,且接种苗木后幼苗的地上干重和根长均显著高于马尾松土壤。两种土壤中共检测到19个OTUs的ECMF,分别属于7科和10属,Cenococum geophilumRhizopogon boninensisTomentella sp.2为两种土壤共有。马尾松林下土壤鉴定到的13种ECMF中,能侵染马尾松的有8种,能侵染鳞苞锥的有6种。米槠林下土壤鉴定到的9种ECMF中,能侵染马尾松的有4种,能侵染鳞苞锥的有7种。C. geophilumSebacina sp.2均能与马尾松和鳞苞锥建立共生关系;而Hyaloscyphaceae sp.、Lactarius inconspicuousRh. boninensisRh. flavidusTomentella sp.1、Tomentella sp.3和Tomentellopsis submollis只侵染马尾松;Athelia sp.、Amanita sp.、Lactarius atrofuscusRussula minorRussula sp.、Sebacina sp.1、Thelephora sp.1、Thelephora sp.2和Tomentella sp.4只侵染鳞苞锥。马尾松土壤的ECMF丰富度指数(IV)、Shannon多样性指数()、Simpson优势度指数(D)高于米槠土壤,说明马尾松土壤相比于米槠土壤ECMF的群落组成更为丰富;但马尾松土壤接种不同宿主植物后的Sorensen相似性指数(0.14)低于米槠土壤(0.36)。部分ECMF的侵染率与寄主的生理生态指标密切相关。  结论  ECM是经过长期与树种共同进化而建立的共生关系,因此马尾松土壤中的ECMF更倾向于侵染马尾松,而米槠土壤的ECMF更倾向于侵染同为壳斗科的鳞苞锥;马尾松林下土壤的ECMF相对于米槠土壤,对寄主植物选择性的更强。虽然土壤理化性质在一定程度上影响了侵染率,但是ECMF的定殖主要受宿主植物的影响。本研究为阐明ECMF对宿主的选择性及两者共进化提供了理论参考。
  • 图  1  不同森林土壤处理的马尾松和鳞苞锥的生长状态

    注:Pm-PmS代表马尾松种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。

    Figure  1.  The growth status of Pinus massoniana and Castanopsis uraiana under different forest soil treatments

    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil.

    图  2  4种主要的外生菌根形态结构

    Figure  2.  Four main ectomycorrhizal morphological structures

    表  1  苗木接种前后土壤的pH和养分含量

    Table  1.   Soil pH and nutrient content before and after seedling inoculation

    时期
    Period
    处理
    Treatment
    pH值
    pH value
    全磷
    TP/(g·kg−1
    全钾
    TK/(g·kg−1
    有效磷
    AP/ (mg·kg−1
    有效钾
    AK/ (mg·kg−1
    全碳
    TC/(g·kg−1
    全氮
    TN/(g·kg−1
    移植前
    Pretransplant
    CcS 4.82±0.02a 0.85±0.03a 14.63±0.30a 32.67±0.65a 8.46±0.61a 22.37±0.47a 2.18±0.10a
    PmS 4.67±0.02b 0.54±0.05b 12.73±0.31a 15.38±0.71b 6.60±0.22a 17.74±0.05b 2.20±0.02a
    Pm移植后
    After Pm transplantation
    CcS 4.80±0.01a 0.82±0.01a 14.63±0.12a 33.78±0.32a 8.52±0.12a 21.83±0.16a 2.12±0.02a
    PmS 4.61±0.01b 0.52±0.01b 12.45±0.19a 15.17±0.04b 6.06±0.10a 17.62±0.02b 2.20±0.03a
    Cu移植后
    After Cu transplantation
    CcS 4.80±0.04a 0.82±0.01a 14.41±0.17a 33.86±0.29a 8.45±0.13a 22.01±0.24a 2.18±0.03a
    PmS 4.64±0.01b 0.52±0.01b 12.16±0.09a 15.75±0.11b 6.81±0.15a 17.61±0.02b 2.13±0.02a
    注:Pm代表马尾松;Cu代表鳞苞锥;CcS代表米槠土壤;PmS代表马尾松土壤;不同小写字母表示独立样本t检验显著性差异(P<0.05)。
    Note: Pm represents Pinus massoniana; Cu represents Castanopsis carlesii; CcS represents Castanopsis uraiana soil; PmS represents Pinus massoniana soil. Different lowercase letters indicated significant difference in Student’t-test (P<0.05).
    下载: 导出CSV

    表  2  不同森林土壤处理的马尾松和鳞苞锥的生长指标

    Table  2.   The growth index of Pinus massoniana and Castanopsis carlesii under different forest soil treatments

    处理
    Treatment
    地上干重
    Shoot dry weight/g
    根干重
    Root dry weight/g
    根长
    Root Length/cm
    根表面积
    Root SurfArea/cm2
    根体积
    Root Volume/cm3
    根尖数
    Root Tips/个
    Pm-PmS0.2±0.02b0.12±0.02a17.95±2.00b19.2±3.24b0.32±0.06a380±49.1b
    Pm-CcS0.62±0.05a0.14±0.01a36.5±2.27a33.6±2.72a0.38±0.03a570±37.9a
    Cu-PmS0.36±0.03b0.34±0.02a18.4±1.10b53.7±3.60a0.41±0.04a2399±152a
    Cu-CcS0.58±0.04a0.41±0.03a33.2±1.60a55.5±3.45a0.45±0.03a2755±201a
    注:Pm-PmS代表马尾松种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。不同小写字母表示独立样本t检验显著性差异(P<0.05)。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil. Different lowercase letters indicated significant difference in Student’t-test (P<0.05).
    下载: 导出CSV

    表  3  马尾松和米槠林外生菌根真菌OTUs的鉴定

    Table  3.   Identification of ectomycorrhizal fungi OTUs in Pinus massoniana and Castanopsis carlesii forests

    物种数
    Species No.
    属名
    Genus
    OTUsNCBI对比号
    NCBI comparison
    number
    序列长度(相似度)
    Sequence length/bp
    (similarity)/%
    相对丰度(%)/相对频率(%)
    Relative abundance/Relative frequency
    Pm-PmS
    (n=10)
    Cu-PmS
    (n=15)
    Pm-CcS
    (n=10)
    Cu-CcS
    (n=15)
    1 阿太菌属
    Athelia
    Athelia sp. AB831863 570/585 (97%) 1.99/9.09
    2 鹅膏属
    Amanita
    Amanita sp. OK586725 525/578 (91%) 5.55/3.13
    3 空团菌属
    Cenococcum
    Cenococcum geophilum KC967408 448/449 (99%) 1.25/20.69 12.50/42.42 4.53/22.99 22.83/46.88
    4 Hyaloscyphaceae sp. MT522555 476/481 (99%) 0.46/3.45
    5 乳菇属
    Lactarius
    Lactarius inconspicuous KF433004 601/645 (93%) 27.35/26.44 -
    6 Lactarius atrofuscus MK351919 618/635 (97%) 0.26/1.56
    7 须腹菌属
    Rhizopogon
    Rhizopogon boninensis MK395368 629/633 (99%) 31.78/37.93 9.49/18.39
    8 Rhizopogon flavidus KP893815 745/746 (99%) 7.82/3.45
    9 红菇属
    Russula
    Russula minor NR_174896 593/593 (100%) 5.38/1.56
    10 Russula sp. MT522574 604/607 (99%) 7.80/9.09
    11 蜡耳壳属
    Sebacina
    Sebacina sp.1 LC553305 507/542 (94%) 7.44/6.06
    12 Sebacina sp.2 LC553304 531/537 (99%) 58.63/32.18 63.42/40.63
    13 革菌属
    Thelephora
    Thelephora sp.1 KM576617 558/593 (94%) 41.88/15.15
    14 Thelephora sp.2 HE814236 372/379 (98%) - 0.14/3.13
    15 棉隔菌属
    Tomentella
    Tomentella sp.1 AB848650 572/578 (99%) 37.89/17.24
    16 Tomentella sp.2 HE814192 533/538 (99%) 3.61/6.90 2.42/3.13
    17 Tomentella sp.3 MT678909 581/583 (99%) 16.00/3.45
    18 Tomentella sp.4 JF273546 572/575 (99%) 28.40/18.18
    19 Tomentellopsis Tomentellopsis submollis JQ711898 609/639 (95%) 1.19/6.90
    注:Pm-PmS代表马尾松种植在马尾松土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-CcS代表鳞苞锥种植在米槠土壤,“—”表示未被鉴定到。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil, “—” means not identified.
    下载: 导出CSV

    表  4  马尾松和米槠林下土壤中外生菌根真菌OTUs分类统计

    Table  4.   OTUs classification statistics of ectomycorrhizal fungi in soil of Pinus massoniana and Castanopsis carlesii forest


    Phylum

    Class

    Order

    Family

    Genus
    OTUs
    PmSCcS
    BasidiomycotaAgaricomycetesBolealesRhizopogonaceae须腹菌属 Rhizopogon21
    ThelephoralesThelephoraceae棉隔菌属 Tomentella41
    Tomentellopsis10
    革菌属 Thelephora11
    SebacinalesSebacinaceae蜡耳壳属 Sebacina11
    RussulalesRussulaceae乳菇属 Lactarius02
    红菇属 Russula11
    AthelialesAtheliaceae阿太菌属 Athelia10
    AGaricalesAmanitaceae鹅膏属 Amanita01
    AscomycotaLeotiomycecesHelotialesHyalodyphaceae10
    DothideomycetesMytilinidialesGloniaceae空团菌属 Cenococcum11
    注:PmS代表马尾松土壤;CcS代表米槠土壤,“—”表示未被鉴定到。
    Note: PmS represents Pinus massoniana soil; CcS represents Castanopsis uraiana soil, “—” means not identified.
    下载: 导出CSV

    表  5  马尾松和米槠林下土壤处理不同宿主中外生菌根真菌OTUs丰富度和多样性指数

    Table  5.   OTUs richness and diversity index of ectomycorrhizal fungi in different hosts of Pinus massoniana and Castanopsis carlesii forest soil treatment

    处理
    Treatment
    ECMF丰富度
    ECMF richness
    多样性指数
    Shannon index
    优势度指数
    Sinpson index
    Pm-PmS131.720.77
    Cu-PmS1.600.77
    Pm-CcS91.260.68
    Cu-CcS1.170.60
    注:Pm-PmS代表马尾松种植在马尾松土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil.
    下载: 导出CSV

    表  6  马尾松和米槠林下土壤处理不同宿主中共有外生菌根真菌类群数量(上三角)和Sorensen指数(下三角)

    Table  6.   The number of common ectomycorrhizal fungal groups (upper triangle) and Sorensen index (lower triangle) in different hosts of Pinus massoniana and Castanopsis carlesii forest soil treatments

    处理
    Treatment
    Pm-PmSCu-PmSPm-CcSCu-CcS
    Pm-PmS122
    Cu-PmS0.1411
    Pm-CcS0.330.202
    Cu-CcS0.270.150.36
    注:Pm-PmS代表马尾松种植在马尾松土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil.
    下载: 导出CSV

    表  7  马尾松林下土壤侵染马尾松和鳞苞锥幼苗的外生菌根真菌组成分析

    Table  7.   Analysis of the composition of ectomycorrhizal fungi in the soil of Pinus massoniana forest infected with Pinus massoniana and Castanopsis uraiana seedlings

    属名
    Genus
    OTUs检测频率
    Detection frequency/%
    侵染率
    Infection rate/%
    Pm(n=10)Cu(n=15) Pm(n=10)Cu(n=15)
    空团菌属 Cenococcum Cenococcum geophilum 37.5 46.7 4.0 6.1
    棉隔菌属 Tomentella Tomentella sp.1 31.3 67.8
    Tomentella sp.2 12.5 41.5
    Tomentella sp.3 6.3 87.0
    Tomentella sp.4 20.0 30.0
    须腹菌属 Rhizopogon Rhizopogon boninensis 68.8 44.5
    Rhizopogon flavidus 6.3 38.0
    Tomentellopsis Tomentellopsis submollis 6.3 4.0
    - Hyaloscyphaceae sp. 6.3 4.0
    革菌属 Thelephora Thelephora sp.1 16.7 48.1
    蜡耳壳属 Sebacina Sebacina sp.1 6.7 31.8
    阿太菌属 Athelia Athelia sp. 10.0 5.4
    红菇属 Russula Russula sp. 10.0 16.9
    注:Pm代表马尾松;Cu代表鳞苞锥,“—”表示未被鉴定到。
    Note: Pm represents Pinus massoniana; Cu represents Castanopsis carlesii, “—” means not identified.
    下载: 导出CSV

    表  8  米槠林下土壤侵染马尾松和鳞苞锥幼苗的外生菌根真菌组成分析

    Table  8.   Analysis of the composition of ectomycorrhizal fungi in the soil of Castanopsis carlesii forest infected with Pinus massoniana and Castanopsis uraiana seedlings

    属名
    Genus
    OTUs检测频率
    Detection frequency/%
    侵染率
    Infection rate/%
    Pm(n=10)Cu(n=15) Pm(n=10)Cu(n=15)
    空团菌属 Cenococcum Cenococcum geophilum 66.7 100.0 8.2 10.1
    蜡耳壳属 Sebacina Sebacina sp.2 93.3 86.7 54.9 31.4
    乳菇属 Lactarius Lactarius inconspicuous 76.7 32.2
    Lactarius atrofuscus 3.3 1.0
    须腹菌属 Rhizopogon Rhizopogon boninensis 50.0 18.1
    革菌属 Thelephora Thelephora sp.2 6.7 1.0
    棉隔菌属 Tomentella Tomentella sp.2 6.7 21.5
    鹅膏属 Amanita Amanita sp. 6.7 44.5
    红菇属 Russula Russula minor 3.3 65.4
    注:Pm代表马尾松;Cu代表鳞苞锥,“—”表示未被鉴定到。
    Note: Pm represents Pinus massoniana; Cu represents Castanopsis carlesii, “—” means not identified.
    下载: 导出CSV

    表  9  外生菌根真菌侵染率与土壤理化性质的相关性分析

    Table  9.   Correlation analysis between infection rate of ectomycorrhizal fungi and soil physical and chemical properties

    处理
    Treatment
    OTUspH值
    pH value
    全磷
    TP/(g·kg−1
    全钾
    TK/(g·kg−1
    有效磷
    AP/(mg·kg−1
    有效钾
    AK/(mg·kg−1
    全碳
    TC/(g·kg−1
    全氮
    TN/(g·kg−1
    Pm-PmSCenococcum geophilum0.6220.456−0.3880.5090.0180.275−0.469
    Rhizopogon boninensis−0.314−0.2150.166−0.0720.138−0.231−0.435
    Pm-CcsCenococcum geophilum0.284−0.079−0.125−0.189−0.1800.0500.330
    Rhizopogon boninensis−0.127−0.0290.2060.086−0.0890.1990.077
    Sebacina sp.2−0.022−0.0940.118−0.0900.2330.089−0.136
    Lactarius inconspicuous−0.1900.177−0.2090.271−0.256−0.0230.116
    Cu-PmSCenococcum geophilum−0.074−0.023−0.557*0.3780.1650.379−0.319
    Cu-CcsCenococcum geophilum0.0470.106−0.0270.074−0.0880.0040.234
    Sebacina sp.20.455*−0.1210.074−0.1340.0770.1540.232
    注:Pm-PmS代表马尾松种植在马尾松土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。*表示相关在P<0.05水平显著。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil. * indicated that the correlation was significant at P<0.05 level, respectively.
    下载: 导出CSV

    表  10  外生菌根真菌侵染率与苗木生长量的相关性分析

    Table  10.   Correlation analysis between infection rate of ectomycorrhizal fungi and seedling biomass

    处理
    Treatment
    OTUs地上干重
    Shoot dry weight/g
    根干重
    Root dry weight/g
    根长
    Root Length/cm
    根表面积
    Root SurfArea/cm2
    根体积
    Root Volume/cm3
    根尖数
    Root Tips/个
    Pm-PmSCenococcum geophilum−0.099−0.095−0.199−0.065−0.1500.150
    Rhizopogon boninensis−0.0680.0060.028−0.0530.0370.020
    Pm-CcsCenococcum geophilum−0.321−0.325−0.137−0.337−0.367−0.304
    Rhizopogon boninensis0.098−0.088−0.12−0.015−0.026−0.102
    Sebacina sp.2−0.149−0.027−0.324−0.043−0.0200.117
    Lactarius inconspicuous0.088−0.0380.3500.0030.045−0.139
    Cu-PmSCenococcum geophilum−0.687**−0.229−0.370−0.226−0.200−0.045
    Cu-CcsCenococcum geophilum0.056−0.047−0.074−0.0200.064−0.079
    Sebacina sp.20.1920.004−0.2750.1520.253−0.220
    注:Pm-PmS代表马尾松种植在马尾松土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。**表示相关在P<0.01水平显著。
    Note: Pm-PmS represents Pinus massoniana planted in Pinus massoniana soil; Cu-PmS represents Castanopsis uraiana planted in Pinus massoniana soil; Pm-CcS represents Pinus massoniana planted in Castanopsis carlesii soil; Cu-CcS represents Castanopsis uraiana planted in Castanopsis carlesii soil. ** indicated that the correlation was significant at P<0.01 level, respectively.
    下载: 导出CSV
  • [1] 斯钦毕力格, 赵敏, 白淑兰. 外生菌根研究进展 [J]. 分子植物育种, 2017, 15(2):757−762.

    SI Q, ZHAO M, BAI S L. Research progress of ectomycorrhiza [J]. Molecular Plant Breeding, 2017, 15(2): 757−762.(in Chinese)
    [2] 苏红飞, 万杰, 伍建榕, 等. 云南松菌根菌的分离培养条件筛选 [J]. 林业调查规划, 2008, 33(2):135−138. doi: 10.3969/j.issn.1671-3168.2008.02.036

    SU H F, WAN J, WU J R, et al. Culture Conditions’Selection for the separation of the mycorrhizal fungi of Pinus yunnanensis [J]. Forest Inventory and Planning, 2008, 33(2): 135−138.(in Chinese) doi: 10.3969/j.issn.1671-3168.2008.02.036
    [3] 张亮, 王明霞, 张薇, 等. 外生菌根真菌对土壤钾的活化作用 [J]. 微生物学报, 2014, 54(7):786−792.

    ZHANG L, WANG M X, ZHANG W, et al. Mobilization of potassium from soil by ectomycorrhizal fungi [J]. Acta Microbiologica Sinica, 2014, 54(7): 786−792.(in Chinese)
    [4] 佟丽华, 张红光, 姚鑫. 外生菌根真菌的作用与应用开发前景展望 [J]. 安徽农学通报, 2008, 14(14):86−89. doi: 10.3969/j.issn.1007-7731.2008.14.048

    TONG L H, ZHANG H G, YAO X. Prospects of exploitation and utilization of ecto-mycorrhiza [J]. Anhui Agricultural Science Bulletin, 2008, 14(14): 86−89.(in Chinese) doi: 10.3969/j.issn.1007-7731.2008.14.048
    [5] LIU Y J, LI X Z, KOU Y P. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems [J]. Forests, 2020, 11(4): 453. doi: 10.3390/f11040453
    [6] STEIDINGER B S, CROWTHER T W, LIANG J, et al. Author Correction: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses [J]. Nature, 2019, 571: E8. doi: 10.1038/s41586-019-1342-9
    [7] GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18: 649−660. doi: 10.1038/s41579-020-0402-3
    [8] HIBBETT D S, GILBERT L B, DONOGHUE M J. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes [J]. Nature, 2000, 407: 506−508. doi: 10.1038/35035065
    [9] FLOUDAS D, BINDER M, RILEY R, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes [J]. Science, 2012, 336(6089): 1715−1719. doi: 10.1126/science.1221748
    [10] PELLITIER P T, ZAK D R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters [J]. The New Phytologist, 2018, 217(1): 68−73. doi: 10.1111/nph.14598
    [11] 俞嘉瑞, 袁海生. 外生菌根真菌的共生互作和宿主选择机制研究进展 [J]. 菌物学报, 2023, 42(1):86−100.

    YU J R, YUAN H S. Research progress on symbiotic interaction and host selection mechanisms of ectomycorrhizal fungi [J]. Mycosystema, 2023, 42(1): 86−100.(in Chinese)
    [12] RIGAMONTE T A, PYLRO V S, DUARTE G F. The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations [J]. Brazilian Journal of Microbiology, 2010, 41(4): 832−840. doi: 10.1590/S1517-83822010000400002
    [13] VAN DER LINDE S, SUZ L M, ORME C D L, et al. Environment and host as large-scale controls of ectomycorrhizal fungi [J]. Nature, 2018, 558: 243−248. doi: 10.1038/s41586-018-0189-9
    [14] 卢丽君, 白淑兰, 王静, 等. 外生菌根合成的条件及形成机制 [J]. 微生物学杂志, 2005, 25(2):84−87. doi: 10.3969/j.issn.1005-7021.2005.02.020

    LU L J, BAI S L, WANG J, et al. Synthesis conditions of ectomycorrhiza and its formation mechanism [J]. Journal of Microbiology, 2005, 25(2): 84−87.(in Chinese) doi: 10.3969/j.issn.1005-7021.2005.02.020
    [15] DICKIE I A. Host preference, niches and fungal diversity [J]. New Phytologist, 2007, 174(2): 230−233. doi: 10.1111/j.1469-8137.2007.02055.x
    [16] 孟繁荣, 邵景文. 东北主要林区针叶林下外生菌根真菌及生态分布 [J]. 菌物系统, 2001, 20(3):413−419.

    MENG F R, SHAO J W. The ecological distribution of ecto-mycorrhizal fungi in main coniferous forests in Northeast China [J]. Mycosystema, 2001, 20(3): 413−419.(in Chinese)
    [17] PALMER J M, LINDNER D L, VOLK T J. Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin [J]. Mycorrhiza, 2008, 19(1): 27−36. doi: 10.1007/s00572-008-0200-7
    [18] 康文斯. 川东地区四种马尾松林分类型外生菌根真菌群落多样性的研究[D]. 雅安: 四川农业大学, 2020.

    KANG W S. Diversity of ectomycorrhizal fungal communities in four types of Pinus massoniana stands in eastern sichuan[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese)
    [19] TEDERSOO L, MAY T W, SMITH M E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages [J]. Mycorrhiza, 2010, 20(4): 217−263. doi: 10.1007/s00572-009-0274-x
    [20] 耿荣, 耿增超, 黄建, 等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性 [J]. 菌物学报, 2016, 35(7):833−847.

    GENG R, GENG Z C, HUANG J, et al. Diversity of ectomycorrhizal fungi associated with Quercus aliena in Xinjiashan forest region of Qinling Mountains [J]. Mycosystema, 2016, 35(7): 833−847.(in Chinese)
    [21] NAGAIKE T, HAYASHI A, KUBO M, et al. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan [J]. Forest Ecology and Management, 2006, 236(2/3): 278−285.
    [22] HUANG J, HAN Q S, LI J J. Soil propagule bank of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana) grown in a manganese mine wasteland [J]. PLoS One, 2018, 13(6): e0198628. doi: 10.1371/journal.pone.0198628
    [23] 成斌斌. 土壤pH的测定 [J]. 化学教与学, 2014(4):95−97. doi: 10.3969/j.issn.1008-0546.2014.04.035

    CHENG B B. Determination of soil pH [J]. Chemistry Teaching and Learning, 2014(4): 95−97.(in Chinese) doi: 10.3969/j.issn.1008-0546.2014.04.035
    [24] 胡慧蓉, 王艳霞. 土壤学实验指导教程[M]. 2版. 北京: 中国林业出版社, 2020.

    HU H R, WANG Y X. Experimental tutorial of soil science[M]. 2nd ed. Beijing: China Forestry Publishing House, 2020. (in Chinese)
    [25] MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses [J]. Nature Reviews Microbiology, 2016, 14: 760−773. doi: 10.1038/nrmicro.2016.149
    [26] PENA R, POLLE A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress [J]. The ISME Journal, 2014, 8(2): 321−330. doi: 10.1038/ismej.2013.158
    [27] KAISER C, KORANDA M, KITZLER B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil [J]. New Phytologist, 187(3): 843-858.
    [28] TEDERSOO L, JAIRUS T, HORTON B M, et al. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers [J]. The New Phytologist, 2008, 180(2): 479−490. doi: 10.1111/j.1469-8137.2008.02561.x
    [29] WU B Y, NIOH I. Some characteristics of bacteria isolated from the ectomycorrhiza of Chinese pine inoculated with Cenococcum graniforme [J]. Microbes and Environments, 1998, 13(1): 17−21. doi: 10.1264/jsme2.13.17
    [30] MIKOLA P. On the physiology and ecology of Cenococcum graniforme [J]. Forest, 1948, 36(3): 1−104.
    [31] 乌仁陶格斯, 韩胜利, 闫伟. 浅析土生空团菌自然侵染率与植被、根际土壤因子的关系 [J]. 中国农学通报, 2012, 28(25):47−51.

    WU R, HAN S L, YAN W. The relationship between natural infection rate of Cenococcum geophilum and vegetation, rhizosphere soil factors [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 47−51.(in Chinese)
    [32] 郭子轩, 王永龙, 武彬蔚, 等. 外生菌根真菌土生空团菌种群遗传多样性与结构研究 [J]. 菌物学报, 2021, 40(4):920−935.

    GUO Z X, WANG Y L, WU B W, et al. Population genetic diversity and structure of ectomycorrhizal fungus Cenococcum geophilum [J]. Mycosystema, 2021, 40(4): 920−935.(in Chinese)
    [33] MATSUDA Y, YAMAKAWA M, INABA T, et al. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients [J]. Mycoscience, 2017, 58(5): 369−377. doi: 10.1016/j.myc.2017.04.009
    [34] JANY J L, MARTIN F, GARBAYE J. Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests [J]. Plant and Soil, 2003, 255(2): 487−494. doi: 10.1023/A:1026092714340
    [35] CASIERI L, AIT LAHMIDI N, DOIDY J, et al. Biotrophic transportome in mutualistic plant–fungal interactions [J]. Mycorrhiza, 2013, 23(8): 597−625. doi: 10.1007/s00572-013-0496-9
    [36] RUSCA T A, KENNEDY P G, BRUNS T D. The effect of different pine hosts on the sampling of Rhizopogon spore banks in five Eastern Sierra Nevada forests [J]. The New Phytologist, 2006, 170(3): 551−560. doi: 10.1111/j.1469-8137.2006.01689.x
    [37] BEILER K J, DURALL D M, SIMARD S W, et al. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts [J]. The New Phytologist, 2010, 185(2): 543−553.[PubMed doi: 10.1111/j.1469-8137.2009.03069.x
    [38] 秦岭, 徐践, 马萱, 等. 板栗共生菌根真菌种类及其发生规律的研究 [J]. 北京农学院学报, 1995, 10(1):71−76.

    QIN L, XU J, MA X, et al. Research on Symbiotical Fungi Species and EctomycorrhizaeOccurrence of Chestnut (Castanea mollissima BL. ) [J]. Journal of Beijing Agricultural College, 1995, 10(1): 71−76.(in Chinese)
    [39] 黄秋晨, 梁香娜, 张颖. 外生菌根菌: 干巴菌的研究进展 [J]. 中国食用菌, 2022, 41(10):14−17,25.

    HUANG Q C, LIANG X N, ZHANG Y. Research progress of the ectomycorrhizal fungus Thelephora ganbajun [J]. Edible Fungi of China, 2022, 41(10): 14−17,25.(in Chinese)
    [40] 魏江春. 菌物多样性、系统性及其对人类发展的意义 [J]. 生物多样性, 1993, 1(1):23−25.

    WEI J C. Biological diversity and systematicainess of panomycetes, and their significance to the development of human beings [J]. Chinese Biodiversity, 1993, 1(1): 23−25.(in Chinese)
    [41] TEDERSOO L, SADAM A, ZAMBRANO M, et al. Low diversity and high host preference of ectomycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot [J]. The ISME Journal, 2010, 4(4): 465−471. doi: 10.1038/ismej.2009.131
    [42] DING Q, LIANG Y, LEGENDRE P, et al. Diversity and composition of ectomycorrhizal community on seedling roots: The role of host preference and soil origin [J]. Mycorrhiza, 2011, 21(8): 669−680. doi: 10.1007/s00572-011-0374-2
    [43] GARCIA K, DELAUX P M, COPE K R, et al. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses [J]. The New Phytologist, 2015, 208(1): 79−87. doi: 10.1111/nph.13423
    [44] 李娇, 蒋先敏, 尹华军, 等. 不同林龄云杉人工林的根系分泌物与土壤微生物 [J]. 应用生态学报, 2014, 25(2):325−332.

    LI J, JIANG X M, YIN H J, et al. Root exudates and soil microbes in three Picea asperata plantations with different stand ages [J]. Chinese Journal of Applied Ecology, 2014, 25(2): 325−332.(in Chinese)
    [45] SMIT E, VEENMAN C, BAAR J. Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers [J]. FEMS Microbiology Ecology, 2003, 45(1): 49−57. doi: 10.1016/S0168-6496(03)00109-0
    [46] 周慧杰. 培养液pH对外生菌根真菌生长影响分析 [J]. 中国食用菌, 2019, 38(8):42−44.

    ZHOU H J. Analysis of the effect of culture pH of medium on the growth of ectomycorrhizal fungi [J]. Edible Fungi of China, 2019, 38(8): 42−44.(in Chinese)
    [47] 许美玲, 朱教君, 孙军德, 等. 树木外生菌根菌与环境因子关系研究进展 [J]. 生态学杂志, 2004, 23(5):212−217. doi: 10.3321/j.issn:1000-4890.2004.05.038

    XU M L, ZHU J J, SUN J D, et al. A review on the relationships between forest Ectomycorrhizal fungi and environmental factors [J]. Chinese Journal of Ecology, 2004, 23(5): 212−217.(in Chinese) doi: 10.3321/j.issn:1000-4890.2004.05.038
    [48] 韩桂云, 齐玉臣, 刘忱, 等. 温度、pH对菌根真菌生长影响的研究 [J]. 生态学杂志, 1993, 12(1):15−19. doi: 10.3321/j.issn:1000-4890.1993.01.007

    HAN G Y, QI Y C, LIU C, et al. Effects of Temperature and pH on Mycorrhizal Fungus Growth [J]. Chiniese Journal of Ecology, 1993, 12(1): 15−19.(in Chinese) doi: 10.3321/j.issn:1000-4890.1993.01.007
    [49] 蔡万宣. 马尾松育苗造林管理 [J]. 特种经济动植物, 2018, 21(6):31−32. doi: 10.3969/j.issn.1001-4713.2018.06.016

    CAI W X. Management of Pinus massoniana seedling and afforestation [J]. Special Economic Animal and Plant, 2018, 21(6): 31−32.(in Chinese) doi: 10.3969/j.issn.1001-4713.2018.06.016
    [50] 张伟军, 陈灼华. 优良乡土树种米槠营养杯育苗技术 [J]. 现代农业科技, 2011(14):231. doi: 10.3969/j.issn.1007-5739.2011.14.172

    ZHANG W J, CHEN Z H. Seedling raising techniques of Castanopsis carlesii, an excellent native tree species, in nutrient cups [J]. Modern Agricultural Sciences and Technology, 2011(14): 231.(in Chinese) doi: 10.3969/j.issn.1007-5739.2011.14.172
  • 加载中
图(2) / 表(10)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-10-17
  • 网络出版日期:  2024-01-25

目录

    /

    返回文章
    返回