• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫芝体细胞不亲和性与遗传差异分析

蒋晓涵 杨春艳 王车昭 刘新锐

蒋晓涵,杨春艳,王车昭,等. 紫芝体细胞不亲和性与遗传差异分析 [J]. 福建农业学报,2024,39(5):1−7
引用本文: 蒋晓涵,杨春艳,王车昭,等. 紫芝体细胞不亲和性与遗传差异分析 [J]. 福建农业学报,2024,39(5):1−7
JIANG X H, YANG C Y, WANG C Z, et al. Somatic incompatibility and genetic difference of Ganoderma sinense [J]. Fujian Journal of Agricultural Sciences,2024,39(5):1−7
Citation: JIANG X H, YANG C Y, WANG C Z, et al. Somatic incompatibility and genetic difference of Ganoderma sinense [J]. Fujian Journal of Agricultural Sciences,2024,39(5):1−7

紫芝体细胞不亲和性与遗传差异分析

基金项目: 福建省科技重大专项专题项目(2022NZ029015)
详细信息
    作者简介:

    蒋晓涵(2000 —),女,在读研究生,主要从事食用菌遗传育种研究,E-mail:978234858@qq.com

    通讯作者:

    刘新锐(1980 —),男,博士,副研究员,主要从事食用菌遗传育种研究,E-mail: 121376381@qq.com

  • 中图分类号: Q36

Somatic incompatibility and genetic difference of Ganoderma sinense

  • 摘要:   目的  评价紫芝菌株间体细胞不亲和反应与遗传差异的关系,为应用体细胞不亲和性评价紫芝菌株间的遗传差异提供依据。  方法  以7个不同交配基因型的紫芝单核体为亲本,应用单向或者双向核迁移技术构建双核体菌株;通过在PDA培养基配对检测双核体菌株间的体细胞不亲和性,并采用ISSR、RAPD和SRAP 3种分子标记综合分析双核体菌株间的遗传差异。  结果  构建了5类遗传背景清晰的不同双核体菌株11个,它们之间的体细胞不亲性反应分为亲和、不亲和,其中不亲和反应出现隔离区、隔离区带线状和类似墙式结构的3种类型;3种分子标记综合分析显示,11个菌株间的遗传相似系数0.29~0.97,UPMGA聚类树状图能很好的展示11个双核体菌株间的遗传差异,并与亲本来源相一致。  结论  紫芝菌株间的体细胞不亲性反应主要受细胞核的影响,而细胞质的影响极小,并且紫芝菌株间的体细胞不亲性反应类型与菌株间的遗传差异相对应,在以后的紫芝种质资源遗传差异评价中,可应用操作简便的体细胞不亲和性进行初步分析。
  • 图  1  紫芝双核体在PDA培养基上的SI反应

    正面(F)/背面(B)。

    Figure  1.  Somatic incompatibility gap reactions between heterokaryotic colonies of G.sinense paired on PDA medium

    Front (F)/back (B).

    图  2  11株紫芝ISSR、RAPD和SRAP分析UPMGA聚类树状图

    Figure  2.  UPMGA dendrogram based on ISSR, RAPD and SRAP analysis of 11 G.sinense strains

    表  1  引物序列

    Table  1.   sequences of primers used for molecular markers

    分子标记
    Molecular marker
    引物
    primer
    序列(5′-3′)
    sequences
    分子标记
    Molecular marker
    引物
    primer
    序列(5′-3′)
    sequences
    ISSR ISSR6 DHB (CGA)5 SRAP ME4 TGAGTCCAAACCGGACC
    ISSR ISSR17 (TG)8RC SRAP ME5 TGAGTCCAAACCGGAAG
    ISSR ISSR18 VHV (GT)8 SRAP ME6 TGAGTCCAAACCGGTAG
    RAPD S17 AGGGAACGAG SRAP EM8 GACTGCGTACGAATTAGC
    RAPD S18 CCACAGCAGT SRAP EM13 GACTGCGTACGAATTGGT
    RAPD S367 AGCGAGCAAG SRAP EM14 GACTGCGTACGAATTCAG
    SRAP ME3 TGAGTCCAAACCGGAAT SRAP EM17 GACTGCGTACGAATTCCA
    ISSR引物中的单字母简写代表多碱基混合位点。位置: D= (A, G, T), H= (A, C, T), B= (C, G, T), R= (A, G), V= (A, C, G).
    Single letter abbreviations of ISSR primers for mixed base. Positions: D= (A, G, T), H= (A, C, T), B= (C, G, T), R= (A, G), V= (A, C, G).
    下载: 导出CSV

    表  2  测试菌株信息

    Table  2.   Information of tested strains

    菌株
    strain
    亲本和交配型
    Parents and mating types
    菌株
    strain
    亲本和交配型
    Parent and mating type
    Sh2 G.s0007-31FP A1B7、G.s0011-16 A3B3 Sh13 G.s0007-31 A1B7、G.s0011-3 FP A2B2
    Sh3 G.s0011-16 FP A3B3、G.s0012-28 A5B5 Sh14 G.s0007-31 FP A1B7、G.s0012-26 A4B4
    Sh4 G.s0011-16 A3B3、G.s0012-28 FP A5B5 Sh15 G.s0007-31 A1B7、G.s0012-26 FP A4B4
    Sh9 G.s0004-11 A1B1、G.s0011-16 FP A3B3 Sh21 G.s0011-3 A2B2、G.s0012-28 FP A5B5
    Sh10 G.s0004-11 FP A1B1、G.s0011-16 A3B3 Sh24 G.s0004-11 A1B1、G.s0014-36 FP A7B7
    Sh12 G.s0007-31 FP A1B7、G.s0011-3 A2B2
    FP代表母本。
    Female parent (FP).
    下载: 导出CSV

    表  3  测试菌株的体细胞不和性与遗传关系

    Table  3.   Somatic incompatibility and genetic relationship between strains

    异核体类别
    Type of heterokaryon
    配对
    pairing
    拮抗信息
    Information of antagonism
    遗传相似系数
    Genetic similarity coefficient
    Ⅰ 同核异质体
    Same dikaryon in different FP
    Sh3×Sh4 - 0.97
    Sh12×Sh13 - 0.97
    Sh14×Sh15 - 0.95
    Ⅱ 细胞质和一个核相同,另一个核不同
    one same monokaryon with one different monokaryon in the same FP
    Sh2×Sh14 G+ 0.66
    Sh2×Sh12 G+ 0.74
    Sh3×Sh9 GL++ 0.66
    Ⅲ 细胞质相同,细胞核不同
    Different dikaryon in the same FP
    Sh4×Sh15 G+++ 0.46
    Sh3×Sh13 G+++ 0.63
    Sh9×Sh13 G++ 0.57
    Ⅳ 一个核相同,另一个核与细胞质都不同
    one same monokaryon with one different monokaryon in different FP
    Sh3×Sh10 GL++ 0.69
    Sh2×Sh15 G+ 0.66
    Sh3×Sh2 W-l S 0.54
    Ⅴ 细胞质和细胞核均不同
    Different dikaryon in different FP
    Sh2×Sh21 G++ 0.66
    Sh3×Sh14 G+++ 0.49
    Sh14×Sh24 G++++ 0.29
    FP代表母本;SI反应分为(1)无拮抗-,(2)隔离型G,和(3)隔离型带线状GL和(4)菌丝墙式结构W-l S;“+”表示弱拮抗,“++”中等拮抗,“+++”强拮抗,“++++”非常强拮抗。
    Female parent (FP), Three types of SI reaction, (1) no antagonism -, (2) [G] gap, (3) [GL] gap with line (4) hyphal wall-like structure (W-l S). + slight reaction, ++ moderate reaction, +++ strong reaction, ++++ more strong reaction.
    下载: 导出CSV
  • [1] 黄年来, 林志彬, 陈国梁. 中国食药用菌学[M]. 上海: 上海科技文献出版社, 2010: 1623-1673.
    [2] 刘新锐, 王圣铕, 谢宝贵, 等. 紫芝不亲和性因子分析 [J]. 菌物学报, 2014, 33(2):464−468

    Liu X R, Wang S Y, Xie B G, et al. Incompatibility factors of Ganoderma sinense [J]. Mycosystema, 2014, 33(2): 464−468. (in Chinese)
    [3] Liming T, Chan W , Baokai C , et al. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity. [J]. Phytochemistry, 2023, 215: 113870-113870.
    [4] Gao S Y, Zhang P, Zhang C Y, et al. Meroterpenoids from Ganoderma sinense protect hepatocytes and cardiomyocytes from oxidative stress induced injuries [J]. Fitoterapia, 2018, 131: 73−79. doi: 10.1016/j.fitote.2018.10.009
    [5] WU N, PENG B, LI T, et al. Rapid Simultaneous Determination of Four Ganoderic Acids in Ganoderma (Chinese Name: Lingzhi) by Direct Infusion–Multiple Reaction Monitoring Cubed [J]. Journal of Analysis and Testing, 2024, 8(1): 52−62. doi: 10.1007/s41664-023-00271-1
    [6] Mei R Q, Zuo F J, Duan X Y, et al. Ergosterols from Ganoderma sinense and their anti-inflammatory activities by inhibiting NO production [J]. Phytochemistry Letters, 2019, 32: 177−180. doi: 10.1016/j.phytol.2019.06.006
    [7] Jiang Y F, Chang Y J, Liu Y, et al. Overview of Ganoderma sinense polysaccharide-an adjunctive drug used during concurrent Chemo/Radiation therapy for cancer treatment in China [J]. Biomedicine & Pharmacotherapy, 2017, 96: 865−870.
    [8] HAN W, CHEN H, ZHOU L, et al. Polysaccharides form Ganoderma Sinense-rice bran fermentation products and their anti-tumor activities on non-small-cell lung cancer [J]. BMC Complement Medicine Therap1es, 2021, 21(1): 169. doi: 10.1186/s12906-021-03346-7
    [9] Lind M, Stenlid J, Olson A. Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete Heterobasidion annosum s. l [J]. Fungal Genetics and Biology, 2007, 44(12): 1242−1251. doi: 10.1016/j.fgb.2007.04.013
    [10] Marcais B, Caël O, Delatour C. Genetics of somatic incompatibility in Collybia fusipes [J]. Mycological Research, 2000, 104(3): 304−310. doi: 10.1017/S0953756299001069
    [11] 唐传红, 张劲松, 陈明杰, 等. 利用拮抗试验和RAPD对灵芝属菌株进行分类研究 [J]. 微生物学通报, 2005, 32(5):72−76. doi: 10.3969/j.issn.0253-2654.2005.05.015

    Tang C H, Zhang J S, Chen M J, et al. Study on classification of strains of Ganoderma by anatagonistic effect and Rapd [J]. Microbiology China, 2005, 32(5): 72−76. (in Chinese) doi: 10.3969/j.issn.0253-2654.2005.05.015
    [12] 李黎. 中国木耳栽培种质资源的遗传多样性研究[D]. 武汉: 华中农业大学, 2016

    LI L. Studies on Genetic Diversity of Auricularia Auricula-judae Cultivated Germplasm Resources in China[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
    [13] 张瑞颖. 香菇菌株多相鉴定鉴别技术研究[D]. 北京: 中国农业大学, 2004

    ZHANG R Y. Study on Polyphasic Strain-typing Technique of Lentinula Edodes[D]. Beijing: China Agricultural University, 2004. (in Chinese)
    [14] 刘靖宇, 宋秀高, 叶夏, 等. 香菇菌株遗传多样性ISSR、RAPD和SRAP综合分析 [J]. 食用菌学报, 2011, 18(3):1−8. doi: 10.3969/j.issn.1005-9873.2011.03.001

    Liu J Y, Song X G, Ye X, et al. Differentiation of Lentinula edodes strains using ISSR, RAPD, SRAP markers [J]. Acta Edulis Fungi, 2011, 18(3): 1−8. (in Chinese) doi: 10.3969/j.issn.1005-9873.2011.03.001
    [15] 徐珍, 章炉军, 尚晓冬, 等. 金针菇品种 DUS 测试性状的分级与评价[J]. 菌物学报, 2019, 38(5): 658-668

    Xu Z, Zhang L J, Shang X D, et al. Gradation and evaluation for Flammulina filiformis DUS testing traits[J]. Mycosystema, 2019, 38 (5): 658-668. (in Chinese)
    [16] 刘靖宇, 刘新锐, 邓优锦, 等. 双向核迁移在香菇遗传和育种中的应用研究[J]. 菌物学报, 2011, 30(5): 774-781.

    Liu J Y, Liu X R, Deng Y J, et al. The application of the ‘bidirectional haploid nuclei migration’ in breeding and genetics of Lentinula edodes. [J] Mycosystema, , 2011, 30(5): 774-781. (in Chinese)
    [17] Caten C. Vegetative incompatibility and cytoplasmic infection in fungi [J]. Microbiology, 1972, 72(2): 221−229.
    [18] Worrall JJ. Somatic incompatibility in basidionycetes [J]. Mycologia, 1997, 89(1): 24−36. doi: 10.1080/00275514.1997.12026751
    [19] Giovannetti M, Sbrana C, Strani P, et al. Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis [J]. Apply Environment Microbiology, 2003, 69: 616−624. doi: 10.1128/AEM.69.1.616-624.2003
    [20] May G. Somatic incompatibility and individualism in the coprophilous basidiomycete[J], Coprinus cinereus. Transactions of the British Mycological Society, 1988, 91 (3): 443-451.
    [21] Hansen EM, Stenlid J, Johansson M. Genetic control of somatic incompatibility in the root-rotting basidiomycete Heterobasidion annosum [J]. Mycological Research, 1993, 97(10): 1229−1233. doi: 10.1016/S0953-7562(09)81290-2
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-04-10
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回