• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花生长链酰基辅酶A合成酶6基因(LACS6)的克隆、鉴定与组织表达

徐日荣 陈湘瑜 唐兆秀

徐日荣, 陈湘瑜, 唐兆秀. 花生长链酰基辅酶A合成酶6基因(LACS6)的克隆、鉴定与组织表达[J]. 福建农业学报, 2016, 30(11): 1164-1170. doi: 10.19303/j.issn.1008-0384.2016.11.005
引用本文: 徐日荣, 陈湘瑜, 唐兆秀. 花生长链酰基辅酶A合成酶6基因(LACS6)的克隆、鉴定与组织表达[J]. 福建农业学报, 2016, 30(11): 1164-1170. doi: 10.19303/j.issn.1008-0384.2016.11.005
XU Ri-rong, CHEN Xiang-yu, TANG Zhao-xiu. Cloning, Verification and Tissue Expression of Long-chain Acyl-CoA Synthetase 6 (LACS6) Gene in Peanut (Arachis hypogaea L.)[J]. Fujian Journal of Agricultural Sciences, 2016, 30(11): 1164-1170. doi: 10.19303/j.issn.1008-0384.2016.11.005
Citation: XU Ri-rong, CHEN Xiang-yu, TANG Zhao-xiu. Cloning, Verification and Tissue Expression of Long-chain Acyl-CoA Synthetase 6 (LACS6) Gene in Peanut (Arachis hypogaea L.)[J]. Fujian Journal of Agricultural Sciences, 2016, 30(11): 1164-1170. doi: 10.19303/j.issn.1008-0384.2016.11.005

花生长链酰基辅酶A合成酶6基因(LACS6)的克隆、鉴定与组织表达

doi: 10.19303/j.issn.1008-0384.2016.11.005
基金项目: 

福建省科技计划项目——省属公益类科研院所基本科研专项 2014R1026-4

详细信息
    作者简介:

    徐日荣(1979-),男,硕士,副研究员,研究方向:花生遗传育种(E-mail:rirongxu@163.com)

    通讯作者:

    唐兆秀(1958-),男,研究员,研究方向:花生遗传育种(E-mail:tzxfz@163.com)

  • 中图分类号: S565.2

Cloning, Verification and Tissue Expression of Long-chain Acyl-CoA Synthetase 6 (LACS6) Gene in Peanut (Arachis hypogaea L.)

  • 摘要: 长链酰基辅酶A合成酶(long chain acyl-CoA synthetase:LACS)是油脂代谢的重要催化酶。为揭示花生脂肪酸代谢机理,采用RT-PCR技术,首次从花生Arachis hypogaea L.克隆到LACS6(GenBank登录号:KU301860),分析该基因的结构组成,预测编码氨基酸与其他植物的同源性,采用Real-Time PCR技术对LACS6的组织表达进行研究。结果显示,花生LACS6基因全长2 116 bp,包含2 088 bp的ORF,编码695个氨基酸,有23个外显子和22个内含子。氨基酸序列比对显示花生LACS6有真核生物酰基辅酶A合成酶保守结构域,并含有保守的激活位点和绑定位点。同源性分析发现花生LACS6与鹰嘴豆、绿豆、大豆、梅等13种物种的氨基酸一致性在79%~87%,进化树分析显示,花生LACS6与鹰嘴豆等豆科植物亲缘较近。实时荧光PCR分析表明,花生LACS6在花生根、茎、叶、子房柄、仁和花等组织均有表达,且差异明显。子房柄和花的表达量极高,与根、茎、叶和仁等组织有极显著差异,花生LACS6组织的表达量大小排序为花 > 子房柄 > 叶 > 仁 > 茎 > 根。本研究结果为揭示花生脂肪酸代谢和品质改良提供理论依据。
  • 图  1  花生AhLACS6基因PCR电泳结果

    注:1为AhLACS6基因;M为 DL2000 DNA Marker。

    Figure  1.  Electrophoresis on LACS6 gene of A.hypogaea (Ah)

    图  2  花生AhLACS6基因的核酸序列及预测氨基酸序列

    Figure  2.  Nucleic acid and amino acid sequences of AhLACS6 gene

    图  3  花生AhLACS6基因在基因组中结构

    Figure  3.  Genome structure of AhLACS6 gene

    图  4  AhLACS6与其他植物LACS6的多重比较

    注:下划线为酰基激活酶AAE保守序列。

    Figure  4.  Multiple comparisons on AhLACS6 gene and other plant LACS6 genes

    图  5  AhLACS6与其他植物进化树分析

    Figure  5.  Evolutionary tree analysis on AhLACS6 gene and other plant LACS6 genes

    图  6  AhLACS6在不同组织的荧光定量PCR分析

    注:不同大写字母表示差异极显著(P<0.01)。

    Figure  6.  Fluorescence quantitative PCR analysis on AhLACS6 gene in various plant organs

    表  1  AhLACS6与其他植物LACS6的一致性

    Table  1.   Homology of AhLACS6 gene and other plant LACS6 genes

    物种 登录号 一致性
    /%
    鹰嘴豆 Cicer arietinum XP_004496750.1 87
    绿豆 Vigna radiata XP_014524185.1 86
    大豆 Glycine max XP_003555336.1 86
    Prunus mume XP_008222945.1 85
    葡萄 Vitis vinifera XP_002277936.1 84
    蓖麻 Ricinus communis NP_001310618.1 84
    白梨 Pyrus x bretschneideri XP_009364219.1 85
    苹果 Malus domestica XP_008390867.1 85
    Ziziphus jujuba XP_015888035.1 84
    野草莓 Fragaria vesca XP_004296905.1 83
    Populus trichocarpa XP_002315784.2 82
    黄瓜 Cucumis sativus XP_004134142.1 81
    欧洲油菜 Brassica napus XP_013735920.1 79
    下载: 导出CSV
  • [1] SARVAMANGALA C, GOWDA M V C, VARSHNEY R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut(Arachis hypogaea L.)[J]. Field Crops Research, 2011, 122(1):49-59. doi: 10.1016/j.fcr.2011.02.010
    [2] 王移收. 工业用油料植物脂肪酸及其改良[J].中国油料作物学报, 2006, 28(4):498-502. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200604025.htm
    [3] SHEN B, SINKEVICIUS K W, SELINGER D A, et al. The homeobox gene GLABRA2 affects seed oil content in Arabidopsis[J]. Plant Molecular Biology, 2006, 60(3):377-387. doi: 10.1007/s11103-005-4110-1
    [4] HILLS M J, MURPHY D J, BEEVERS H. Inhibition of neutral lipase from castor bean lipid bodies by coenzyme A (coA) and oleoyl-coA[J]. Plant Physiology, 1989, 89(3):1006-1010. doi: 10.1104/pp.89.3.1006
    [5] SHOCKEY J M, FULDA M S, BROWSE J A. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism[J]. Plant Physiology, 2002, 129(4):1710-1722. doi: 10.1104/pp.003269
    [6] L S, SONG T, KOSMA DK, et al. Arabidopsis CER8 encodes long-chain acyl-coA synthetase 1(LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis[J]. The Plant Journal, 2009, 59:553-564. doi: 10.1111/tpj.2009.59.issue-4
    [7] SCHNURR J A, SHOCKEY J M, BROWSE J. The acyl-coA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis[J]. Plant Cell, 2004, 16(3):629-642. doi: 10.1105/tpc.017608
    [8] PULSIFER I P, KLUGE S, ROWLAND O. Arabidopsis long-chain acyl-CoA synthetase 1(LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast[J]. Plant Physiology & Biochemistry, 2012, 51(2):31-39. http://cn.bing.com/academic/profile?id=20500e0f9a8c2b6465a0418dbc88b9b3&encoded=0&v=paper_preview&mkt=zh-cn
    [9] JESSEN D, OLBRICH A, KNUFER J, et al. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis[J]. The Plant Journal, 2011, 68:715-726. doi: 10.1111/j.1365-313X.2011.04722.x
    [10] FULDA M, SHOCKEY J, WERBER M, et al. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation[J]. The Plant Journal, 2002, 32(1):93-103. doi: 10.1046/j.1365-313X.2002.01405.x
    [11] MARTIN F, JUDY S, AMINE A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(2):394-405. doi: 10.1105/tpc.019646
    [12] SCHNURR J A, SHOCKEY J M, DE BOER G J, et al. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis[J]. Plant Physiology, 2002, 129(4):1700-1709. doi: 10.1104/pp.003251
    [13] ZHAO L, KATAVIC V, LI F, HAUGHN GW, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1(LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis[J]. The Plant Journal, 2010, 64:1048-1058. doi: 10.1111/tpj.2010.64.issue-6
    [14] PONGDONTRI P, HILLS M. Characterization of a novel plant acyl-coA synthetase that is expressed in lipogenic tissues of Brassica napus L[J]. Plant molecular biology, 2001, 47(6):717-726. doi: 10.1023/A:1013652014744
    [15] LILI Y, XIAOLI T, BINGJUN J, et al. A peroxisomal long-chain acyl-CoA synthetase from Glycine max involved in lipid degradation[J]. Plos One, 2014, 9(7):e100144-e100144. doi: 10.1371/journal.pone.0100144
    [16] WANG X L, LI X B. The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton[J]. Plant Journal, 2009, 57(3):473-486. doi: 10.1111/tpj.2009.57.issue-3
    [17] JIA J, ZHAO S, KONG X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J]. Nature, 2013, 496(7443):91-95. doi: 10.1038/nature12028
    [18] AZNAR-MORENO J A, CALER N M V, MART NEZ-FORCE E, et al. Sunflower(Helianthus annuus) long-chain acyl-coenzyme a synthetases expressed at high levels in developing seeds[J]. Physiologia Plantarum, 2014, 150(3):363-373. doi: 10.1111/ppl.2014.150.issue-3
    [19] LING H Q, ZHAO S, LIU D, et al. Draft genome of the wheat A-genome progenitor Triticum urartu[J]. Nature, 2013, 496(7443):87-90. doi: 10.1038/nature11997
    [20] CHAN A P, CRABTREE J, ZHAO Q, et al. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature biotechnology, 2010, 28(9):951-956. doi: 10.1038/nbt.1674
    [21] 熊发前, 刘俊仙, 王丛丛, 等mCTAB-dLiCl法高效提取花生各组织部位RNA及其验证[J]. 南方农业学报, 2013, 44(11):1781-1784. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201311006.htm
    [22] CONTI E, FRANKS N P, BRICK P. Crystal structure of luciferase throws light on a superfamily of adenylate-forming enzymes[J]. Structure, 1996, 4(3):287-298. doi: 10.1016/S0969-2126(96)00033-0
    [23] CONTI E, STACHELHAUS T, MARAHIEL M A, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S[J]. Embo Journal, 1997, 16(14):4174-4183. doi: 10.1093/emboj/16.14.4174
    [24] SHOCKEY J M, FULDA M S, JOHN B. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases[J]. Plant Physiology, 2003, 132(2):1065-1076. doi: 10.1104/pp.103.020552
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1204
  • HTML全文浏览量:  148
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-09-19
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回