• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻蛋白激酶OsCIPK5的亚细胞定位分析及RNAi转基因水稻的获得

熊桂红 刘小娟 杨靓 吴祖建

熊桂红, 刘小娟, 杨靓, 吴祖建. 水稻蛋白激酶OsCIPK5的亚细胞定位分析及RNAi转基因水稻的获得[J]. 福建农业学报, 2017, 32(4): 353-358. doi: 10.19303/j.issn.1008-0384.2017.04.001
引用本文: 熊桂红, 刘小娟, 杨靓, 吴祖建. 水稻蛋白激酶OsCIPK5的亚细胞定位分析及RNAi转基因水稻的获得[J]. 福建农业学报, 2017, 32(4): 353-358. doi: 10.19303/j.issn.1008-0384.2017.04.001
XIONG Gui-hong, LIU Xiao-juan, YANG Liang, WU Zu-jian. Subcellular Localization Analysis of Rice Protein Kinase Gene OsCIPK5 and Generation of Its RNAi Transgenic Plants[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 353-358. doi: 10.19303/j.issn.1008-0384.2017.04.001
Citation: XIONG Gui-hong, LIU Xiao-juan, YANG Liang, WU Zu-jian. Subcellular Localization Analysis of Rice Protein Kinase Gene OsCIPK5 and Generation of Its RNAi Transgenic Plants[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 353-358. doi: 10.19303/j.issn.1008-0384.2017.04.001

水稻蛋白激酶OsCIPK5的亚细胞定位分析及RNAi转基因水稻的获得

doi: 10.19303/j.issn.1008-0384.2017.04.001
基金项目: 

福建省科技计划重大前期项目 2012N4001

教育部博士点基金 20123515120005

福建省自然科学基金项目 2014J06011

福建省高校杰出青年科研人才培育计划 JA13092

福建农林大学杰出青年科研人才培养专项基金项目 xjq201402

详细信息
    作者简介:

    熊桂红(1986-), 女, 博士, 研究方向:植物病毒与分子生物学

    通讯作者:

    杨靓(1981-), 女, 副教授, 硕士生导师, 研究方向:植物病毒及分子生物学(E-mail:yangliang.fafu@139.com)

    吴祖建(1967-), 男, 研究员, 博士生导师, 研究方向:植物病毒学(E-mail:wuzujian@126.com)

  • 中图分类号: S188

Subcellular Localization Analysis of Rice Protein Kinase Gene OsCIPK5 and Generation of Its RNAi Transgenic Plants

  • 摘要: 在植物生长发育中,CIPKs(CBL-interacting protein kinases)在胁迫信号转导和增强抗逆途径中发挥着重要作用,而OsCIPK5的具体功能还未知。为了研究OsCIPK5的功能,本研究从日本晴水稻中成功克隆了OsCIPK5基因。用生物信息学方法对其编码的蛋白进行分析,结果表明OsCIPK5含有2个功能区即激酶活性区和NAF区,OsCIPK5与5种植物的CIPK5同源性较高,而与短花药野生稻CIPK5的同源性最高(94%),亲缘关系最近。利用植物生理学方法对水稻进行低钾处理,结果表明水稻根中OsCIPK5受低钾诱导表达,而叶片中OsCIPK5表达量没有变化;同时构建了OsCIPK5与黄色荧光蛋白基因融合的植物瞬时表达载体,共聚焦显微镜观察显示,OsCIPK5编码的蛋白主要定位在细胞核、细胞膜,还以颗粒状结构不规则分布在细胞质中。进一步构建了OsCIPK5的RNAi载体,通过水稻遗传转化体系获得26株阳性转基因水稻。荧光定量PCR(Real-time qPCR)分析表明,T1代转基因水稻中OsCIPK5的表达量与野生型相比显著降低。OsCIPK5的生物信息学分析、植物生理学分析、亚细胞定位以及RNAi转基因水稻的获得为研究OsCIPK5的功能奠定了基础。
  • 图  1  OsCIPK5基因的RT-PCR扩增结果

    注:M为DNA分子标记Trans2K Plus;1为OsCIPK5 RT-PCR扩增产物。

    Figure  1.  RT-PCR result of OsCIPK5

    图  2  OsCIPK5的氨基酸序列分析

    注:A为6种植物CIPK5氨基酸序列的多重性比对;B为6种植物CIPK5的氨基酸同源性分析;C为6种植物CIPK5的系统发育分析。

    Figure  2.  Analysis of the amino acid sequence of OsCIPK5

    图  3  水稻叶片和根中OsCIPK5低钾处理表达分析

    Figure  3.  Real-time PCR analysis of OsCIPK5 expression level in leaf and rot of rice under low K treatment

    图  4  OsCIPK5蛋白在本氏烟下表皮细胞中的定位

    注:A为黄光荧光;B为叶绿体;C为融合。Bar=8 μm。

    Figure  4.  Localization in Nicotiana benthamiana cell of OsCIPK5

    图  5  OsCIPK5 RNAi转基因水稻的PCR检测

    注:M为DNA分子标记MakerⅢ;1~9为OsCIPK5 RNAi转基因水稻PCR检测;CK为阴性对照。

    Figure  5.  PCR detection of OsCIPK5 RNAi in transgenic rice plants

    图  6  qPCR检测转基因水稻中OsCIPK5相对表达量

    注:WT为野生型水稻。

    Figure  6.  OsCIPK5 gene relative expression level in transgenic rice by qPCR

    表  1  PCR引物

    Table  1.   PCR primers

    引物名称 引物序列(5′-3′) 引物用途
    CIPK5-F ATG GAG AAG AAG GCG TCC ATC OsCIPK5的扩增
    CIPK5-R TTA AAT GGC ATG TCT CGA GAT TG OsCIPK5 gene cloning
    G418-F GTC CCG CTC AGA AGA ACT CGT C 转基因水稻的检测
    G418-R CGC TGA AAT CAC CAG TCT CTC TC Detection of transgenic rice
    q-CIPK5-F ATA GGG GCT GTG GAC TTC TGT OsCIPK5表达量检测
    q-CIPK5-R GAC ACT TTG AGG TTG CCA TTC Detection of relative expression level of OsCIPK5
    GAPDH-F AAG CCA GCA TCC TAT GAT CAG ATT 内参基因检测
    GAPDH-R CGT AAC CCA GAA TAC CCT TGA GTT T Detection of internal reference gene GAPDH
    下载: 导出CSV
  • [1] FUJITA M, FUJITA Y, NOUTOSHI Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks [J]. Current Opinion in Plant Biology, 2006, 9(4):436-442. doi: 10.1016/j.pbi.2006.05.014
    [2] XIONG L M, SCHUMAKER K S, ZHU J K. Cell Signaling during Cold, Drought, and Salt Stress [J]. Plant Cell, 2001, 14 (S1):165-183.
    [3] DEFALCO T A, BENDER K W, SNEDDEN W A. Breaking the code: Ca sensors in plant signaling [J]. Biochemical Journal, 2010, 425(1):27-40. doi: 10.1042/BJ20091147
    [4] YANG T B, POOVAIAH B W. Calcium/calmodulin-mediated signal network in plants [J]. Trends in Plant Science, 2003, 8(10):505-512. doi: 10.1016/j.tplants.2003.09.004
    [5] HARMON A C, GRIBSKOV M, HARPER J F. CDPKs-a kinase for every Ca2+ signal? [J]. Trends in Plant Science, 2000, 5(4):154-159. doi: 10.1016/S1360-1385(00)01577-6
    [6] LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al. Calmodulins and Calcineurin B-like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants [J]. Plant Cell, 2002, 14(1):S389-S400.
    [7] SHI J R, KIM K N, RITZ O. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis [J]. Plant Cell, 1999, 11(12):2393-2405. doi: 10.1105/tpc.11.12.2393
    [8] LIU J K, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7):3730-3734. doi: 10.1073/pnas.97.7.3730
    [9] GUO Y, HALFTER U, ISHITANL M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance [J]. Plant Cell, 2001, 13(6):1383-1400. doi: 10.1105/tpc.13.6.1383
    [10] HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 Protein Kinase Physically Interacts with and Is Activated by the Calcium-Binding Protein SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7):3735-3740. doi: 10.1073/pnas.97.7.3735
    [11] BATISTIC O, KUDLA J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta, 2004, 219(6):915-924. doi: 10.1007/s00425-004-1333-3
    [12] WEINL S, KUDLA J. The CBL CIPK Ca2+ -decoding signaling network: function and perspectives [J]. New Phytologist, 2009, 184(3):517-528. doi: 10.1111/nph.2009.184.issue-3
    [13] YU Y, XIA X, YIN W, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus[J]. Plant Growth Regulation, 2007, 52(2):101-110. doi: 10.1007/s10725-007-9165-3
    [14] TAI F J, YUAN Z H, LI S P, et al. ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 124(3):459-469. doi: 10.1007/s11240-015-0906-0
    [15] 凌秋平, 曾巧英, 胡斐, 等.甘蔗CIPK23基因克隆及对低钾、干旱、盐胁迫的响应[J].分子植物育种, 2015, (6):1329-1335. http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201506029.htm
    [16] LV F L, ZHANG H C, XIA X L, et al. Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica[J]. Plant Cell Reports, 2014, 33(5):807. doi: 10.1007/s00299-013-1557-4
    [17] 刘实, 赵小英, 唐冬英, 等.拟南芥CIPK1基因的功能初步分析[J].西北植物学报, 2007, 27(6):1091-1095. http://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200706003.htm
    [18] CHEN L, WANG Q Q, ZHOU L, et al. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA [J]. Molecular Biology Reports, 2013, 40(8):4759-4767. doi: 10.1007/s11033-013-2572-9
    [19] XU J, LI H D, CHEN L Q, et al. A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K + Transporter AKT1 in Arabidopsis[J]. Cell, 2006, 125(7):1347-1360. doi: 10.1016/j.cell.2006.06.011
    [20] YONG H C, PANDEY G K, GRANT J J, et al. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis [J]. Plant Journal, 2007, 52(2):223-239. doi: 10.1111/tpj.2007.52.issue-2
    [21] XIANG Y, HUANG Y, XIONG L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J].Plant Physiology, 2007, 144(3):1416-1428. doi: 10.1104/pp.107.101295
    [22] LI J, LONG Y, QI G N, et al. The OsAKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex [J]. Plant Cell, 2014, 26(8):3387-3402. doi: 10.1105/tpc.114.123455
    [23] XIONG G H, LIU X J, QIU P, et al. Rice grassy stunt virus p5 interacts with two protein components of the plant-specific CBL-CIPK Ca2+ signaling network of rice[J].Virus Gene, 2017:1-8.
    [24] KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al. Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks[J]. Plant Physiology, 2004, 134(1):43-58. doi: 10.1104/pp.103.033068
    [25] MIKI D, ITOH R, SHIMAMOTO K. RNA Silencing of Single and Multiple Members in a Gene Family of Rice[J]. Plant Physiology, 2005, 138(4):1903-1913. doi: 10.1104/pp.105.063933
    [26] WANG P, LIANG Z F, ZENG J, et al. Generation of tobacco lines with widely different reduction in nicotine levels via RNA silencing approaches [J]. Journal of Biosciences, 2008, 33(2):177-184. doi: 10.1007/s12038-008-0035-6
    [27] SHIMIZU T, YOSHII M, WEI T Y, et al. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus[J]. Plant Biotechnology Journal, 2009, 7(1):24-32. doi: 10.1111/pbi.2009.7.issue-1
    [28] 陈析丰, 顾志敏, 刘峰, 等.生物与非生物胁迫下水稻CIPK基因的鉴定分析[J].中国水稻科学, 2010, 24(6):567-574. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201006003.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1483
  • HTML全文浏览量:  161
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 修回日期:  2017-03-07
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回