• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于坐标注意力机制和残差网络的水稻叶片病虫害识别

廖媛珺 杨乐 邵鹏 余小云

廖媛珺,杨乐,邵鹏,等. 基于坐标注意力机制和残差网络的水稻叶片病虫害识别 [J]. 福建农业学报,2023,38(10):1220−1229 doi: 10.19303/j.issn.1008-0384.2023.10.011
引用本文: 廖媛珺,杨乐,邵鹏,等. 基于坐标注意力机制和残差网络的水稻叶片病虫害识别 [J]. 福建农业学报,2023,38(10):1220−1229 doi: 10.19303/j.issn.1008-0384.2023.10.011
LIAO Y J, YANG L, SHAO P, et al. Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1220−1229 doi: 10.19303/j.issn.1008-0384.2023.10.011
Citation: LIAO Y J, YANG L, SHAO P, et al. Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1220−1229 doi: 10.19303/j.issn.1008-0384.2023.10.011

基于坐标注意力机制和残差网络的水稻叶片病虫害识别

doi: 10.19303/j.issn.1008-0384.2023.10.011
基金项目: 国家自然科学基金项目(61862032);江西省自然科学基金项目(20202BABL202034)
详细信息
    作者简介:

    廖媛珺(2001 —),女,主要从事农业信息技术研究,E-mail:2426247587@qq.com

    通讯作者:

    杨乐(1979 —),男, 副教授,硕士生导师,主要从事农业信息技术研究,E-mail:jxnzhyangle@163.com

  • 中图分类号: S435

Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network

  • 摘要:   目的  针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。  方法  在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用 LeakyReLU 激活函数替代 ReLU 激活函数,使用3个3×3的卷积核替换ResNet-50模型首层卷积层中的7×7卷积核。  结果  在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进。使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为16和学习率为0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法。  结论  改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法。
  • 图  1  水稻叶片病虫害图像

    Figure  1.  Photos of 8 leaf diseases and pest infestations on rice plants

    图  2  坐标注意力的结构

    Figure  2.  Structure of coordinate attention

    图  3  残差网络的结构

    Figure  3.  Structure of residual network

    图  4  传统ResNet-50结构图

    Figure  4.  Structure of conventional ResNet 50

    图  5  relu激活函数的图像

    Figure  5.  Graphic Relu activation function

    图  6  LeakyRelu激活函数的图像

    Figure  6.  Graphic leakyRelu activation function

    图  7  ResNet50-CA的结构

    Figure  7.  Structure of ResNet50-CA

    图  8  训练集和测试集的准确率变化曲线

    Figure  8.  Accuracy of testing and validation datasets

    图  9  训练集和测试集的损失变化曲线

    Figure  9.  Losses of testing and validation datasets

    图  10  5种batchsize的准确率

    Figure  10.  Comparative accuracy of 5 batchsize

    图  11  5种batchsize的损失值

    Figure  11.  Comparative losses of 5 batchsize

    图  12  4种学习率的准确率对比图

    Figure  12.  Accuracy under 4 learning rates

    图  13  学习率的损失值对比图

    Figure  13.  Comparative losses of 4 learning rates

    表  1  水稻叶片病虫害的数据集

    Table  1.   Collected data on leaf diseases and pest infestations on rice plants

    病虫害种类
    The type of leaf
    pests and diseases
    初始数据集
    Initial dataset
    数据增强后的数据集
    The dataset
    after expansion
    白叶枯病
    Bacterial leaf smut
    200 1279
    褐斑病
    Brown spot
    200 1279
    叶黑穗病
    Leaf Smut
    200 1279
    纹枯病
    Stiae blight
    93 1279
    干尖线虫病
    Dry tip worm disease
    76 1279
    细菌性条斑病
    Bacterial leaf streak
    114 1279
    赤枯病
    Red blight
    80 1279
    稻瘟病
    Leaf blast
    123 1279
    下载: 导出CSV

    表  2  ResNet50-CA模型的水稻叶片病虫害数据集测试指标

    Table  2.   ResNet50-CA indicators on leaf diseases and pest infestations of rice

    病害
    Diseases
    精确率
    Accuracy/%
    召回率
    Recall/%
    特异度
    Specificity/%
    F1/%
    白叶枯病 Bacterial leaf smut 100.0 100.0 100.0 100.0
    褐斑病 Brown spot 99.6 100.0 99.9 99.8
    叶黑穗病 Leaf smut 99.6 99.6 99.9 99.6
    纹枯病 Stiae blight 100.0 97.1 100.0 98.5
    干尖线虫病
    Dry tip worm disease
    96.8 100.0 99.5 98.4
    细菌性条斑病
    Bacterial leaf streak
    99.6 99.6 99.9 99.6
    赤枯病 Red blight 99.6 98.7 99.9 99.2
    稻瘟病 Leaf blast 98.7 98.7 99.8 98.7
    下载: 导出CSV

    表  3  不同神经网络的试验结果

    Table  3.   Experimental results of convolutional neural networks

    模型名称
    Model name
    硬件性能
    FLOPs/GMac
    参数
    Parameters/M
    准确率
    Accuracy/%
    VGG1311.2765.0096.82
    VGG1615.4470.4097.69
    MobileNet0.322.2391.26
    ResNet343.6821.2995.43
    ResNet504.1223.5296.44
    ResNet1017.8542.5296.47
    ResNet50-CA4.9925.5199.21
    下载: 导出CSV

    表  4  不同数据集的对比结果

    Table  4.   Experimental results on plant datasets

    模型名称
    Model name
    种类
    Species
    病虫害名称
    Name of diseases
    精确率
    Precision/%
    召回率
    Recall/%
    特异度
    Specificity/%
    F1/%准确率
    Accuracy/%
    ResNet50苹果 Apple黑腐病 Black rot100.099.5100.099.799.78
    健康 Healthy99.799.799.899.7
    赤锈病 Red rust100.0100.0100.0100.0
    赤霉病 Scab99.5100.099.999.7
    葡萄 Grape黑麻疹病 Black measles100.098.9100.099.599.67
    黑腐病 Black rot99.2100.099.799.6
    叶枯病 Leaf blight100.0100.0100.0100.0
    健康 Healthy99.5100.099.999.7
    玉米 Corn普通锈病 Common rust99.6100.099.899.898.6
    叶枯病 Leaf blight99.095.599.797.2
    健康 Healthy99.6100.099.899.8
    叶斑病 Leaf spot96.198.598.897.3
    ResNet50-CA苹果 Apple黑腐病 Black rot100.099.5100.099.799.8
    健康 Healthy99.7100.099.899.8
    赤锈病 Red rust100.0100.0100.0100.0
    赤霉病 Scab100.0100.0100.0100.0
    葡萄 Grape黑麻疹病 Black measles99.6100.099.899.899.8
    黑腐病 Black rot100.099.6100.099.8
    叶枯病 Leaf blight100.0100.0100.0100.0
    健康 Healthy100.0100.0100.0100.0
    玉米 Corn普通锈病 Common rust100.0100.0100.0100.099.0
    叶枯病 Leaf blight99.597.099.998.2
    健康 Healthy100.099.6100.099.8
    叶斑病 Leaf spot99.699.599.098.0
    下载: 导出CSV
  • [1] ZHOU J, LI J X, WANG C S, et al. Crop disease identification and interpretation method based on multimodal deep learning [J]. Computers and Electronics in Agriculture, 2021, 189: 106408. doi: 10.1016/j.compag.2021.106408
    [2] 王超, 王春圻, 刘金明. 基于深度学习的玉米叶片病害识别方法研究 [J]. 现代农业研究, 2022, 28(6):102−106.

    WANG C, WANG C Q, LIU J M. Identification of maize leaf diseases based on deep learning [J]. Modern Agriculture Research, 2022, 28(6): 102−106.(in Chinese)
    [3] JIANG F, LU Y, CHEN Y, et al. Image recognition of four rice leaf diseases based on deep learning and support vector machine [J]. Computers and Electronics in Agriculture, 2020, 179: 105824. doi: 10.1016/j.compag.2020.105824
    [4] BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization [J]. Applied Artificial Intelligence, 2017, 31(4): 299−315. doi: 10.1080/08839514.2017.1315516
    [5] 赵恒谦, 杨屹峰, 刘泽龙, 等. 农作物叶片病害迁移学习分步识别方法 [J]. 测绘通报, 2021(7):34−38.

    ZHAO H Q, YANG Y F, LIU Z L, et al. Step-by-step identification method of crop leaf diseases based on transfer learning [J]. Bulletin of Surveying and Mapping, 2021(7): 34−38.(in Chinese)
    [6] KAWASAKI Y, UGA H, KAGIWADA S, et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks[M]//Advances in Visual Computing. Cham: Springer International Publishing, 2015: 638-645.
    [7] LU Y Z, YOUNG S. A survey of public datasets for computer vision tasks in precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 178: 105760. doi: 10.1016/j.compag.2020.105760
    [8] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717.
    [9] 王志强, 于雪莹, 杨晓婧, 等.基于WGAN和MCA-MobileNet的番茄叶片病害识别[J]. 农业机械学报, 2023, 54(5): 244-252.

    WANG Z Q, YU X Y, YANG X J, et al. Tomato Leaf Diseases Recognition Based on WGAN and MCA - MobileNet[J]. 2023, 54(5): 244-251.
    [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770−778.
    [11] XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. 2015: arXiv: 1505.00853.https://arxiv.org/abs/1505.00853
    [12] 李键红, 吴亚榕. 基于多任务联合稀疏表示的水稻叶片病害自动识别算法 [J]. 仲恺农业工程学院学报, 2017, 30(2):40−44. doi: 10.3969/j.issn.1674-5663.2017.02.007

    LI J H, WU Y R. Automatic recognition algorithm for rice leaf diseases based on multi-task joint sparse representation [J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(2): 40−44.(in Chinese) doi: 10.3969/j.issn.1674-5663.2017.02.007
    [13] JIANG Z C, DONG Z X, JIANG W P, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning [J]. Computers and Electronics in Agriculture, 2021, 186: 106184. doi: 10.1016/j.compag.2021.106184
    [14] 刘立波, 周国民. 基于多层感知神经网络的水稻叶瘟病识别方法 [J]. 农业工程学报, 2009, 25(S2):213−217.

    LIU L B, ZHOU G M. Identification method of rice leaf blast using multilayer perception neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S2): 213−217.(in Chinese)
    [15] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//In Advances in neural information processing systems. 2014: 2204-2212.
    [16] XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. July 6 - 11, 2015, Lille, France. New York: ACM, 2015: 2048-2057.
    [17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141.
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
    [19] WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation[EB/OL]. 2020: arXiv: 2003.07853. https://arxiv.org/abs/2003.07853
    [20] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. IEEE Computer Society, 2016: 6230-6239.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  250
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-10
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回