Change characteristics and influencing factors of soil microbial biomass carbon and nitrogen in plantations in the hilly areas of North China
-
摘要:
目的 土壤微生物是土壤中重要的存在,其含量可以及时准确地反映土壤质量。 方法 在河南省济源市黄河小浪底生态系统定位站内选择3种人工纯林,包括刺槐(Robinia pseudoacacia)林、栓皮栎(Quercus variabilis)林和侧柏(Platyclodus orientalis)林,采集未分解枯落物层(L层)、半分解/腐殖化枯落物层(F/H层)以及矿质土层(0~10、10~20 cm)的土壤样品,测定微生物生物量碳(Microbial biomass carbon,MBC)、微生物生物量氮(Microbial biomass nitrogen,MBN)、MBC/MBN以及枯落物层和土壤层总碳、总氮、可溶性有机碳和可溶性有机氮,研究探讨土壤微生物生物量(Soil microbial biomass,SMB)与树种、土深的关系及其机理。 结果 (1)在枯落物层,3种林型的TC最高值均出现在F/H层,而TN的最高值则均出现在L层;3种林型TC和TN均表现为F/H层>L层>0~10 cm、0~20 cm土层,差异显著(P<0.05)。3种林型的DOC表现为枯落物层高于矿质土壤层,DON为矿质土壤层高于枯落物层。枯落物层3种林分之间的DOC含量均表现为栓皮栎林显著高于刺槐林,二者与侧柏林之间差异不显著(P>0.05)。(2)在枯落物层,3种林型的MBC均表现为F/H层高于L层,为刺槐林>栓皮栎林>侧柏林。在矿质土层中,3种林型的MBC均为0~10 cm高于10~20 cm土层,表现为栓皮栎林>刺槐林>侧柏林,同一土层的刺槐林和栓皮栎林之间差异不显著(P>0.05)。枯落物层及矿质土层的MBN均表现为栓皮栎林>刺槐林>侧柏林。栓皮栎林在各个土层中均是MBN最高的树种,且与侧柏林之间差异显著(P<0.05)。(3)L和F/H层的MBC/MBN比值相差不大,而在矿质土层中,随土深增加MBC/MBN呈上升趋势。在矿质土层,3种林型MBC/MBN均表现为10~20 cm显著高于0~10 cm;在0~10 cm,3种林型之间差异不显著(P>0.05),在10~20 cm,刺槐林显著高于侧柏林(P>0.05),而与栓皮栎林之间差异不显著(P<0.05)。(4)相关性分析表明,3种林型的MBC均与总碳、总氮呈极显著正相关(P<0.01),其中栓皮栎林MBC与总碳的相关系数最大,为0.959。刺槐林和栓皮栎林的C/N与总碳、总氮呈负相关,而侧柏林的C/N则与总碳、总氮呈正相关,相关系数分别为0.512和0.524。 结论 在华北低丘陵山区种植栓皮栎对土壤的生态恢复效果较好,更有利于生态系统的碳氮循环。 Abstract: :Objective Soil microorganism is an important existence in soil, and their content can reflect soil quality timely and accurately. Method In this study, three kinds of artificial pure forests, including Robinia pseudoacacia forest, Quercus variabilis forest, and Platyclodus orientalis forest were selected in the Xiaolangdi ecosystem positioning station of the Yellow River in Jiyuan City, Henan Province. Soil samples of undecomposed litter layer (L layer), semi-decomposed/humic litter layer (F/H layer), and mineral soil layers (0-10 cm, 10-20 cm) were collected, and Microbial biomass carbon (MBC) and Microbial biomass nitrogen (microbial biomass nitrogen, MBN), the ratio of microbial biomass carbon to nitrogen MBC/MBN and physical and chemical properties, the relationship between Soil microbial biomass (SMB) and tree species and soil depth and its mechanism were studied. Result The results show that: (1) In the litter layer, the highest values of TC of all three forest types appeared in the F/H layer, while the highest values of TN appeared in the L layer; the TC and TN of all three forest types showed that the F/H layer>L layer>0~10 cm and 0~20 cm soil layer, and the differences were significant (P<0.05).The DOC of all three forest types was higher than that of the soil layer in the litter layer, and the DON was higher than that of the litter layer in the soil layer. The DOC content of the three forest types in the litter layer was significantly higher in the cork oak forest than in the acacia forest, and the difference between the two and the sapwood forest was not significant (P>0.05). (2) In the litter layer, the MBC of all three forest types was higher in the F/H layer than in the L layer, and was acacia forest > cork oak forest > lateral forest. In the mineral soil layer, the MBC of all three forest types was higher in the 0-10 cm than in the 10-20 cm soil layer, as cork oak forest > acacia forest > lateral forest, and the difference between acacia forest and cork oak forest in the same soil layer was not significant (P>0.05). MBN in both the litter layer and the soil layer showed cork oak forest > acacia forest > lateral forest. The cork oak forest was the highest MBN species in all soil layers and the difference was significant (P<0.05) between it and the sapling forest. (3) The MBC/MBN ratios in the L and F/H horizons did not differ significantly, whereas in the mineral soil layer, the MBC/MBN tended to increase with increasing soil depth. In the mineral soil layer, the MBC/MBN of all three forest types were significantly higher at 10-20 cm than at 0-10 cm; at 0-10 cm, the differences among the three forest types were not significant (P>0.05), and at 10-20 cm, acacia forests were significantly higher than sapodilla forests (P>0.05), whereas the differences with cork oak forests were not significant (P<0.05). (4) Correlation analysis showed that the MBC of all three forest types was highly significantly and positively correlated with total carbon and total nitrogen. The correlation coefficient between MBC and the total carbon of Quercus variabilis was the largest, with a value of 0.959. The C/N ratios of Robinia pseudoacacia and Quercus variabilis were negatively correlated with total carbon and total nitrogen, while the C/N ratios of Platyclodus orientalis were positively correlated with total carbon and total nitrogen, with correlation coefficients of 0.512 and 0.524, respectively. Conclusion In summary, planting Quercus variabilis in the low hilly mountains of North China has a better ecological restoration effect on the soil and is more conducive to the carbon and nitrogen cycle of the ecosystem. -
Key words:
- Microbial biomass /
- Microbial biomass carbon /
- Microbial biomass nitrogen /
- C/N ratio /
- Plantation /
- Soil layer
-
图 1 不同林分及土层/枯落物曾总碳、总氮、可溶性有机碳和可溶性有机氮的变化特征
不同小写字母表示不同林型同一土层/枯落物层之间差异显著(P<0.05),不同大写字母表示同一林型不同土层/枯落物层之间差异显著(P<0.05),下同。
Figure 1. Characteristics of changes in total carbon, total nitrogen, soluble organic carbon and soluble organic nitrogen
Do not share a lowercase letter means the significant difference between different forest types and the same soil layer/litter layer (P < 0.05). Do not share a uppercase letter means the significant difference between different soil layers/litter layers in the same forest type (P < 0.05).
表 1 样地基本情况
Table 1. The basic situation of samples plots
林型
Forest type林龄
Stand age/a坡向
aspect坡度
Slope/(°)平均树高
Mean tree height/m平均胸径
Mean breast diameter/cm林分密度
Stand density/(株·hm−2)郁闭度
Canopy density刺槐纯林R 45 南坡 20 9.66±0.57 11.35±0.67 1800±100 0.82±0.02 栓皮栎纯林Q 43 南坡 23 8.75±0.25 10.78±0.30 1900±100 0.86±0.06 侧柏纯林P 42 北坡 22 9.86±0.16 10.64±0.52 2900±100 0.90±0.04 表 2 土壤微生物生物量碳、氮及其比值与理化性质相关性分析
Table 2. Correlation analysis of soil microbial biomass carbon, nitrogen and their ratio with physical and chemical properties
林型
Forest type指标
Index总碳
Total
carbon总氮
Total
nitrogen可溶性
有机碳
Soluble
organic
carbon可溶性
有机氮
Soluble
organic
nitrogen刺槐林R MBC 0.941** 0.957** 0.169 0.120 MBN 0.750** 0.750** 0.389 0.142 MBC/MBN −0.255 −0.254 −0.594* 0.011 栓皮栎林Q MBC 0.959** 0.950** 0.321 0.293 MBN 0.778** 0.744** 0.450 0.442 MBC/MBN −0.307 −0.279 −0.607* −0.381 侧柏林P MBC 0.912** 0.892** −0.043 −0.095 MBN 0.681* 0.655* −0.228 0.188 MBC/MBN 0.512 0.524 0.425 −0.630* *表示在P<0.05水平上呈显著相关,**表示在P<0.01水平上呈极显著相关。
*indicate different significance at P < 0.05, **indicate different extremely significance at P < 0.01. -
[1] 丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性 [J]. 林业科学, 2018, 54(1):81−89.DING X J, JING R Y, HUANG Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing [J]. Scientia Silvae Sinicae, 2018, 54(1): 81−89.(in Chinese) [2] 吴迪, 李良良, 张红军, 等. 马缨杜鹃的花叶凋落物配比对土壤微生物量与酶活性的影响 [J]. 西南农业学报, 2021, 34(8):1663−1667.WU D, LI L L, ZHANG H J, et al. Effects of litter proportion of flowers and leaves of Rhododendron delavayi on soil microbial quantity and enzyme activity [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1663−1667.(in Chinese) [3] 刘放, 吴明辉, 魏培洁, 等. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征 [J]. 生态学报, 2020, 40(18):6416−6426.LIU F, WU M H, WEI P J, et al. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region [J]. Acta Ecologica Sinica, 2020, 40(18): 6416−6426.(in Chinese) [4] 任江波, 李钠钾, 秦平伟, 等. 不同覆盖材料对土壤理化性状和微生物量碳氮含量的影响 [J]. 西南农业学报, 2018, 31(10):2140−2145.REN J B, LI N J, QIN P W, et al. Effect of different mulching materials on physical and chemical characteristics of soil and microbial biomass [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(10): 2140−2145.(in Chinese) [5] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233−237. doi: 10.1038/s41586-018-0386-6 [6] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性 [J]. 生态学报, 2021, 41(14):5632−5642.LUO M X, HU Z D, LIU X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China [J]. Acta Ecologica Sinica, 2021, 41(14): 5632−5642.(in Chinese) [7] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化 [J]. 应用生态学报, 2019, 30(6):1901−1910.LIU B, WU W F, LIN S Z, et al. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1901−1910.(in Chinese) [8] 柳杨, 何先进, 侯恩庆. 鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化 [J]. 生态学杂志, 2017, 36(2):287−294.LIU Y, HE X J, HOU E Q. Changes in microbial biomass carbon and nitrogen in forest floor litters and mineral soils along forest succession and altitude gradient in subtropical China [J]. Chinese Journal of Ecology, 2017, 36(2): 287−294.(in Chinese) [9] 李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征 [J]. 北京林业大学学报, 2020, 42(12):51−62.LI W N, HUANG Z Y, ZHAO C M, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis [J]. Journal of Beijing Forestry University, 2020, 42(12): 51−62.(in Chinese) [10] 董敏慧, 张良成, 文丽, 等. 松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究 [J]. 中南林业科技大学学报, 2017, 37(11):146−153.DONG M H, ZHANG L C, WEN L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun [J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 146−153.(in Chinese) [11] 李泽东, 李亦然, 周晓莹, 等. 3种华北石质山区造林树种抗旱性评价 [J]. 中国水土保持科学, 2019, 17(5):100−109.LI Z D, LI Y R, ZHOU X Y, et al. Drought resistance evaluation of three afforestation tree species in lithoid hilly area of North China [J]. Science of Soil and Water Conservation, 2019, 17(5): 100−109.(in Chinese) [12] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同土地利用条件下的土壤呼吸比较 [J]. 林业科学, 2014, 50(2):1−7.ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of northern China [J]. Scientia Silvae Sinicae, 2014, 50(2): 1−7.(in Chinese) [13] 庄静静, 张劲松, 孟平, 等. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子 [J]. 林业科学研究, 2016, 29(2):274−282.ZHUANG J J, ZHANG J S, MENG P, et al. Change of soil CH4 fluxes of Robinia pseudoacacia stand during non-growing season and the impact factors [J]. Forest Research, 2016, 29(2): 274−282.(in Chinese) [14] 同小娟, 张劲松, 孟平. 基于涡度相关法的森林生态系统碳交换及其控制机制 [J]. 温带林业研究, 2018, 1(2):1−9,14.TONG X J, ZHANG J S, MENG P. Carbon exchange between forest ecosystems and the atmosphere and its control mechanisms based on the eddy covariance method [J]. Journal of Temperate Forestry Research, 2018, 1(2): 1−9,14.(in Chinese) [15] 赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014ZHAO N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing: Chinese Academy of Forestry, 2014. (in Chinese) [16] 庄静静. 华北低山丘陵区刺槐林土壤甲烷通量变化特征及其影响机制[D]. 北京: 中国林业科学研究院, 2016ZHUANG J J. The characteristics and influencing mechanism of methane fluxes from Robinia pseudoacacia forest in the hilly area of North China[D]. Beijing: Chinese Academy of Forestry, 2016. (in Chinese) [17] 陈美玲, 刘鑫, 陈新峰, 等. 酸雨类型转变对杉木林土壤养分特征和微生物量碳氮的影响 [J]. 浙江农林大学学报, 2022, 39(6):1278−1288.CHEN M L, LIU X, CHEN X F, et al. Effects of acid rain type change on soil nutrient characteristics and microbial C and N in the Cunninghamia lanceolata plantation [J]. Journal of Zhejiang A & F University, 2022, 39(6): 1278−1288.(in Chinese) [18] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响 [J]. 应用生态学报, 2016, 27(4):1031−1038.XIAO H Y, LIU B, YU Z P, et al. Effects of forest types on soil dissolved organic carbon and nitrogen in surface and deep layers in subtropical region, China [J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1031−1038.(in Chinese) [19] 李洪杰, 刘军伟, 杨林, 等. 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响 [J]. 应用与环境生物学报, 2016, 22(4):599−605.LI H J, LIU J W, YANG L, et al. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 599−605.(in Chinese) [20] 张海燕, 张旭东, 李军, 等. 土壤微生物量测定方法概述 [J]. 微生物学杂志, 2005, 25(4):95−99.ZHANG H Y, ZHANG X D, LI J, et al. Outline of soil microbial biomass measurement methods [J]. Journal of Microbiology, 2005, 25(4): 95−99.(in Chinese) [21] 吴明辉, 瞿德业, 李婷, 等. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响 [J]. 地理科学, 2021, 41(1):177−186.WU M H, QU D Y, LI T, et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains [J]. Scientia Geographica Sinica, 2021, 41(1): 177−186.(in Chinese) [22] 南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响 [J]. 植物营养与肥料学报, 2012, 18(3):595−601.NAN Y F, GUO S L, ZHANG Y J, et al. Effects of slope aspect and position on soil organic carbon and nitrogen of terraces in small watershed [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 595−601.(in Chinese) [23] 王风芹, 田丽青, 桑玉强, 等. 华北土石山区刺槐和栓皮栎人工林土壤微生物数量和微生物量碳、氮研究 [J]. 林业科学研究, 2016, 29(6):956−961.WANG F Q, TIAN L Q, SANG Y Q, et al. Studies on soil microorganism quantity and soil microbial biomass carbon and nitrogen of Robinia pseudoacacia and Quercus varaibilis plantations in North China [J]. Forest Research, 2016, 29(6): 956−961.(in Chinese) [24] 李胜蓝, 方晰, 项文化, 等. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量 [J]. 林业科学, 2014, 50(5):8−16.LI S L, FANG X, XIANG W H, et al. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province, China [J]. Scientia Silvae Sinicae, 2014, 50(5): 8−16.(in Chinese) [25] 黄辉, 陈光水, 谢锦升, 等. 土壤微生物生物量碳及其影响因子研究进展 [J]. 湖北林业科技, 2008, 37(4):34−41. doi: 10.3969/j.issn.1004-3020.2008.04.011HUANG H, CHEN G S, XIE J S, et al. Advances on soil microbial biomass carbon and its effect factor [J]. Hubei Forestry Science and Technology, 2008, 37(4): 34−41.(in Chinese) doi: 10.3969/j.issn.1004-3020.2008.04.011 -