Study on the Active Ingredient and Their Antioxidative and Anti-EV71 Virus Effects in Different Concentrations of Ethanol Extract from Grifola frondosa
-
摘要:
目的 探究灰树花适宜的乙醇提取浓度,分析不同乙醇浓度提取对灰树花活性成分及抗氧化、抗EV71病毒活性的影响,促进灰树花的开发利用。 方法 分别采用55%、70%和95%的乙醇溶液作为提取溶剂对灰树花子实体进行超声波辅助提取,测定不同浓度乙醇提取物主要活性成分含量并对其抗氧化、抗EV71病毒能力进行相关性分析。 结果 不同乙醇浓度提取物活性成分含量存在差异,灰树花95%乙醇提取物(GFE95)中多酚和三萜含量最高分别为0.042%和1.82%,灰树花55%乙醇提取物(GFE55)中多糖和蛋白质含量最高,分别为33.08%和17.45%。GFE55、灰树花70%乙醇提取物(GFE70)和GFE95具有不同程度的抗氧化和EV71病毒抑制作用。其中,GFE95的抗氧化能力最好,对2,2-联苯基-1-苦基肼基(DPPH)、2,2′-联氨双二胺盐(ABTS+)、超氧阴离子(O2−)和过氧化氢(H2O2)自由基的清除能力的IC50值分别为0.7427、0.7414、0.902、0.4146 mg·mL−1。GFE95的抗病毒作用较强,当样品质量浓度为200 μg·mL−1时,GFE95对EV71病毒的抑制率最高,达88.18%,其对EV71病毒抑制率的IC50值为194.80 μg·mL−1,TI值为9.65。皮尔逊相关性分析结果表明DPPH、ABTS+、O2−自由基清除率与三萜类成分含量呈极显著正相关,相关系数分别为0.992、0.971和0.613(P<0.01)。O2−、H2O2自由基清除率与多酚类成分含量呈极显著正相关,相关系数分别为0.921和0.997(P<0.01)。EV71病毒抑制作用与多酚、三萜类成分含量呈极显著正相关(P<0.01),相关系数分别为0.536和0.954。灰树花中三萜和多酚的含量与抗氧化、抗病毒活性具有较强的相关性。 结论 以体积分数为95%的乙醇溶液为提取剂,可有效提取灰树花中具有抗氧化、抗病毒活性的多酚、三萜、多糖等活性物质,提高灰树花的生物活性,是进一步促进灰树花的高值化应用开发的关键。研究结果为灰树花的提取溶剂选择及活性作用的研究奠定基础。 Abstract:Objective In order to explore the appropriate ethanol extraction concentration of Grifola frondosa, analyze the effects of different ethanol concentrations on the active components and antioxidant and anti-EV71 virus activities of G. frondosa, and promote the development and utilization of G. frondosa. Method The 55%, 70% and 95% ethanol solutions were used as solvent for ultrasonic-assisted extraction of G.frondosa fruiting bodies. The contents of main active components in different concentrations of ethanol extracts and their antioxidant and anti-EV71 virus abilities were determined for correlation analysis. Result There were differences in the content of active ingredients in different ethanol concentration extracts. The highest contents of polyphenols and triterpenes in 95% ethanol extract of G. frondosa (GFE95) were 0.042% and 1.82%, respectively. The highest contents of polysaccharides and proteins in 55% ethanol extract of G. frondosa (GFE55) were 33.08% and 17.45%, respectively. GFE55, 70% ethanol extract of G. frondosa (GFE70) and GFE95 have different degrees of antioxidant and EV71 virus inhibition. Among them, GFE95 had the best antioxidant capacity, and its IC50 values for scavenging DPPH, ABTS+, O2- and H2O2 free radicals were 0.7427 mg/mL, 0.7414 mg/mL, 0.9026 mg/mL and 0.4146 mg/mL, respectively. GFE95 had a strong antiviral effect. When the sample concentration was 200 μg/mL, the inhibition rate of GFE95 on EV71 virus reached 88.18%. The IC50 value of GFE95 on EV71 virus inhibition rate was 194.80 μg/mL, and the TI value was 9.65. Pearson’s correlation analysis showed that DPPH, ABTS+ and O2- free radical scavenging rates were significantly positively correlated with the content of triterpenoids, with correlation coefficients of 0.992, 0.971 and 0.613 (P<0.01), respectively. O2- and H2O2 free radical scavenging rates were significantly positively correlated with the content of polyphenols, with correlation coefficients of 0.921 and 0.997 (P<0.01), respectively. The inhibitory effect of EV71 virus was significantly positively correlated with the content of polyphenols and triterpenoids (P<0.01), and the correlation coefficients were 0.536 and 0.954, respectively. The contents of triterpenoids and polyphenols in G. frondosa had strong correlation with antioxidant and antiviral activities. Conclusion Using 95% ethanol solution as the extractant, the active substances such as polyphenols, triterpenes and polysaccharides with antioxidant and antiviral activities in G. frondosa can be effectively extracted, and the biological activity of G. frondosa can be improved, which is the key to further promote the high-value application and development of G. frondosa. The results lay a foundation for the study of extraction solvent selection and activity of G. frondosa. -
Key words:
- Grifola frondosa /
- ethanol extract /
- active ingredient /
- antioxidant activity /
- antiviral activity
-
表 1 灰树花不同浓度乙醇提取物抗氧化作用的IC50值
Table 1. IC50 Value of antioxidation in different concentrations of ethanol extract from G. frondosa
样品名称
description of sampleDPPH自由基
清除能力IC50值
DPPH·/( mg·mL−1)ABTS阳离子
自由基清除能力IC50值
ABTS +·/( mg·mL−1)超氧阴离子
自由基清除能力IC50值
O2−·/( mg·mL−1)过氧化氢
自由基清除能力IC50值
H2O2·/( mg·mL−1)GFE55 1.3070 0.9327 1.1960 1.0140 GFE70 0.9958 0.8085 1.4280 2.5830 GFE95 0.7427 0.7414 0.9026 0.4146 表 2 灰树花不同浓度乙醇提取物对EV71病毒的TC50 、TC50 和TI
Table 2. TC50, TC50 and TI of different concentrations of ethanol extract from G. frondosa on EV71 virus
样品名称
Description of
sample样品半数
中毒浓度
TC50/(μg·mL−1)抗EV71病毒
半数有效浓度
IC50/(μg·mL−1)治疗指数
TIGFE55 1868.00 440.60 4.24 GFE70 1869.00 401.50 4.66 GFE95 1879.00 194.80 9.65 表 3 灰树花不同浓度乙醇提取物活性物质的含量与抗氧化、抗EV71病毒活性IC50的相关系数
Table 3. The correlation coefficients between the IC50 of antioxidant and anti-EV71 activities and the contents of active substance in different concentrations of ethanol extract from G. frondosa
指标
Index多酚
Polyphenols三萜
Triterpenoids多糖
Polysaccharide蛋白质
ProteinDPPH自由基清除率IC50 IC50 of DPPH radical scavenging rate 0.130 0.992** −0.252 −0.997** ABTS+自由基清除率IC50 IC50 of ABTS+ radical scavenging rate 0.019 0.971** −0.358 −0.982** O2−自由基清除率IC50 IC50 of O2− radical scavenging rate 0.921** 0.613** 0.706** −0.573** H2O2自由基清除率IC50 IC50 of H2O2 radical scavenging rate 0.997** 0.334 0.893** −0.286 EV71病毒抑制率IC50 IC50 of EV71 virus inhibition rate 0.536** 0.954** 0.179 −0.937** 注:*代表显著相关(P<0.05),**代表极显著相关(P<0.01);
Note: * representd significant correlation (P<0.05), ** representd extremely significant correlation (P<0.01) ; -
[1] MAYELL M. Maitake extracts and their therapeutic potential [J]. Alternative Medicine Review:a Journal of Clinical Therapeutic, 2001, 6(1): 48−60. [2] CHEN Y Q, LIU Y Y, SARKER M M R, et al. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways [J]. Carbohydrate Polymers, 2018, 198: 452−461. doi: 10.1016/j.carbpol.2018.06.077 [3] KOZARSKI M, KLAUS A, JAKOVLJEVIC D, et al. Antioxidants of edible mushrooms [J]. Molecules, 2015, 20(10): 19489−19525. doi: 10.3390/molecules201019489 [4] KIM J H, LIM S R, JUNG D H, et al. Grifola frondosa extract containing bioactive components blocks skin fibroblastic inflammation and cytotoxicity caused by endocrine disrupting chemical, bisphenol A [J]. Nutrients, 2022, 14(18): 3812. doi: 10.3390/nu14183812 [5] WU J Y, SIU K C, GENG P. Bioactive ingredients and medicinal values of Grifola frondosa (Maitake) [J]. Foods (Basel, Switzerland), 2021, 10(1): 95. [6] WANG C E, ZENG F, LIU Y L, et al. Coumarin-rich Grifola frondosa ethanol extract alleviate lipid metabolism disorders and modulates intestinal flora compositions of high-fat diet rats [J]. Journal of Functional Foods, 2021, 85: 104649. doi: 10.1016/j.jff.2021.104649 [7] 于荣利, 贾薇, 张劲松, 等. 八种食药用菌子实体醇提物对乳腺癌细胞MCF-7的体外影响 [J]. 食用菌学报, 2017, 24(2):88−92.YU R L, JIA W, ZHANG J S, et al. Effect of ethanolic extracts from eight kinds of medicinal and edible fungi on breast cancer cell MCF-7 in vitro [J]. Acta Edulis Fungi, 2017, 24(2): 88−92.(in Chinese) [8] 马迪, 韩乐, 冯娜, 等. 灰树花子实体醇提物生物活性研究 [J]. 天然产物研究与开发, 2015, 27(3):381−385.MA D, HAN L, FENG N, et al. Biological activity of ethanol extract of Grifola frodosa fruiting bodies [J]. Natural Product Research and Development, 2015, 27(3): 381−385.(in Chinese) [9] KAIRUPAN C F, MANTIRI F R, RUMENDE R R H. Phytochemical screening and antioxidant activity of ethanol extract of leilem (Clerodendrum minahassae Teijsm. & Binn) as an antihyperlipidemic and antiatherosclerotic agent [J]. IOP Conference Series:Earth Env Sci, 2019, 217(1): 012016. [10] 张倩倩, 黄青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正 [J]. 菌物学报, 2018, 37(12):1792−1801.ZHANG Q Q, HUANG Q. Revised method for determining Ganoderma lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction [J]. Mycosystema, 2018, 37(12): 1792−1801.(in Chinese) [11] 何红梅, 路爽爽, 赵筱斐, 等. 含蔗糖的多糖产品中多糖含量测定 [J]. 世界最新医学信息文摘, 2019, 19(6):275−276,278.HE H M, LU S S, ZHAO X F, et al. Determination of polysaccharide content in polysaccharide products containing sucrose [J]. World Latest Medicine Information, 2019, 19(6): 275−276,278.(in Chinese) [12] SAWCZUK R, KARPINSKA J, FILIPOWSKA D, et al. Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate [J]. Food Chemistry, 2022, 368: 130745. doi: 10.1016/j.foodchem.2021.130745 [13] REZANEJAD R, HEIDARIEH M, OJAGH S M, et al. Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating Powers of gamma-irradiated rosemary extract [J]. Radiochimica Acta, 2020, 108(6): 477−482. doi: 10.1515/ract-2019-3113 [14] 赵鹤鹏, 许秋达, 周鸿立. 玉米须多糖中糖醛酸含量的测定及抗氧化作用的研究 [J]. 河南工业大学学报(自然科学版), 2017, 38(4):81−85.ZHAO H P, XU Q D, ZHOU H L. Determination of uronic acid in corn silk polysaccharides and its antioxidation activity [J]. Journal of Henan University of Technology (Natural Science Edition), 2017, 38(4): 81−85.(in Chinese) [15] 肖文海, 杨政伟, 李远. 参麦注射液抗氧化活性体外实验研究 [J]. 天津中医药, 2019, 36(7):697−700.XIAO W H, YANG Z W, LI Y. In vitro study on the antioxidant activities of Shenmai Injection [J]. Tianjin Journal of Traditional Chinese Medicine, 2019, 36(7): 697−700.(in Chinese) [16] YU P C, TAO X Y, WANG L H, et al. Establishment of a Chinese street rabies virus library and its application for detecting neutralizing activity [J]. Infectious Diseases of Poverty, 2018, 7(1): 117. doi: 10.1186/s40249-018-0500-x [17] FOSS K, PRZYBYŁOWICZ K E, SAWICKI T. Antioxidant activity and profile of phenolic compounds in selected herbal plants [J]. Plant Foods for Human Nutrition, 2022, 77(3): 383−389. doi: 10.1007/s11130-022-00989-w [18] 李青青, 陈晨, 曹艳亭, 等. 红芽芋多糖提取工艺优化及其抗氧化活性的研究 [J]. 江西农业大学学报, 2022, 44(5):1272−1282.LI Q Q, CHEN C, CAO Y T, et al. Optimum extraction process for the polysaccharides from red bud taro(Colocasia esculenta(L. )) schott and its antioxidative activity in vitro [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(5): 1272−1282.(in Chinese) [19] HE Y F, ZHU Q J, CHEN M, et al. The changing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer [J]. Oncotarget, 2016, 7(43): 70803−70821. doi: 10.18632/oncotarget.12223 [20] YANG G Y, DAI J M, LI Z J, et al. Isoindolin-1-ones from the stems of Nicotiana tabacum and their antiviral activities [J]. Archives of Pharmacal Research, 2022, 45(8): 572−583. doi: 10.1007/s12272-022-01399-x [21] 陈贵堂, 王丽敏, 姚舒愉, 等. 灰树花子实体多糖和蛋白的同步提取工艺优化 [J]. 食品科技, 2014, 39(7):248−251,257.CHEN G T, WANG L M, YAO S Y, et al. Extraction of polysaccharide and protein from Grifola frondosa [J]. Food Science and Technology, 2014, 39(7): 248−251,257.(in Chinese) [22] 宋吉玲, 王伟科, 闫静, 等. 药用真菌桑黄抗氧化物质及其活性研究 [J]. 西北农林科技大学学报(自然科学版), 2022, 50(3):144−154.SONG J L, WANG W K, YAN J, et al. Antioxidant substances and activity of medicinal fungus Sanghuangporus [J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(3): 144−154.(in Chinese) [23] CHEN H Y, LEI J Y, LI S L, et al. Progress in biological activities and biosynthesis of edible fungi terpenoids[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-23. [24] HWANG B S, LEE I K, CHOI H J, et al. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii [J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(16): 3256−3260. [25] YU M R, SI L L, WANG Y F, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses [J]. Journal of Medicinal Chemistry, 2014, 57(23): 10058−10071. doi: 10.1021/jm5014067 [26] 周德敏, 李海伟, 肖苏龙. 中药抗病毒的物质基础: 从五环三萜说开来 [J]. 北京大学学报(医学版), 2022, 54(5):832−836.ZHOU D M, LI H W, XIAO S L. The material basis of antivirus of traditional Chinese medicine: From the perspective of pentacyclic triterpenoids [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 832−836.(in Chinese) [27] PAN Y Y, ZENG F, GUO W L, et al. Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats [J]. Food & Function, 2018, 9(12): 6268−6278. [28] CHAILLOU L L, NAZARENO M A. New method to determine antioxidant activity of polyphenols [J]. Journal of Agricultural and Food Chemistry, 2006, 54(22): 8397−8402. doi: 10.1021/jf061729f [29] 吕旭聪, 贾瑞博, 李燕, 等. 灰树花抗氧化活性多酚的提取纯化及其鉴定 [J]. 中国酿造, 2016, 35(3):74−79. doi: 10.11882/j.issn.0254-5071.2016.03.017LV X C, JIA R B, LI Y, et al. Purification and identification of polyphenols with antioxidant activity from Grifola frondosa [J]. China Brewing, 2016, 35(3): 74−79.(in Chinese) doi: 10.11882/j.issn.0254-5071.2016.03.017 [30] 檀琪. 桦褐孔菌三萜类化合物的提取纯化及抗氧化活性研究[D]. 太原: 山西医科大学, 2020TAN Q. Extraction, purification and antioxidant activity of triterpenoids from Inonotus obliquus[D]. Taiyuan: Shanxi Medical University, 2020. (in Chinese) -