• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents
LI S T, LI Z Q, LIN W T, et al. Expression and Correlation Analysis of Citrate Synthase Gene (CS) in Pomelo and Citric Acid Accumulation [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−11
Citation: LI S T, LI Z Q, LIN W T, et al. Expression and Correlation Analysis of Citrate Synthase Gene (CS) in Pomelo and Citric Acid Accumulation [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−11

Expression and Correlation Analysis of Citrate Synthase Gene (CS) in Pomelo and Citric Acid Accumulation

  • Received Date: 2023-10-11
  • Rev Recd Date: 2023-12-23
  • Available Online: 2024-03-28
  • :   Objective  Rganic acids are one of the important flavor substances in fruits, Citrate synthase (CS) plays a pivotal role as a rate-limiting enzyme in the organic acid metabolism of fruits. The citric acid synthase gene AheCS was cloned, and the citric acid content of jackfruit postharvest under different treatments was determined. The biological function of AheCS gene and the correlation between citric acid content and relative expression of AheCS gene were analyzed, and the possible role of AheCS gene in the metabolism of organic acids in jackfruit was discussed.  Method  Haida 2 jackfruit were utilized, treated with 0.5 mg·L−1 1-MCP and 1000 mg·L−1 ETH (40%), and subjected to investigation into the dynamic changes in citric acid during jackfruit fruit ripening under room temperature (22±1°C) and 90% RH conditions. Three jackfruit CS genes (AheCS1, AheCS2, and AheCS3) were cloned, and their bioinformatics were analyzed. Its bioinformatics was analyzed, as well as AheCS1/2/3 under different post-harvest treatments (natural ripening, exogenous ethylene ripening, and 1-MCP delayed ripening).  Result  As jackfruit underwent natural ripening, citric acid content exhibited an initial increase followed by a decline. Exogenous ETH treatment accelerated the synthesis rate of citric acid, advancing the time of peak appearance. 1-MCP treatment inhibited the rate of citric acid decline in the early storage period, thus delaying the peak. Bioinformatics analysis revealed that the open reading frames (ORFs) of AheCS1/2/3 genes were 1422 bp to 1827 bp long. AheCS1/2/3 proteins contained the conserved 'WPNVDAHS' domain of citrate synthase, classifying them as members of the citrate synthase family. The amino acid sequences of AheCS1/2/3 showed the closest phylogenetic relationships with citrus CsCS (MH_048698.1), mulberry MnCs (XP010087965.1), and Anthurium AaCS (JAT55223.1), with similarities reaching 86.49%, 97%, and 86%, respectively. qRT-PCR results indicated that the expression of AheCS1/2/3 genes was low in the early stage of natural fruit ripening (CK) and increased in the later stage. Exogenous ETH treatment advanced the expression of AheCS1 and overall increased the expression of AheCS2/3. 1-MCP treatment delayed the increase in the expression of Peak occurrence time of AheCS1/2/3 but increased their expression in the later stages of maturity. Correlation analysis revealed a positive correlation between citric acid content and the expression of AheCS1/2/3 genes during jackfruit fruit ripening, with AheCS2 reaching a significant level.   Conclusion  The accumulation of citric acid during jackfruit maturation may be regulated by the AheCS2 genes, providing a foundation for further research on the functionality and genetic improvement of jackfruit AheCS genes.
  • loading
  • [1]
    LI J X, ZHANG C L, LIU H, et al. Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication [J]. Journal of Food Quality, 2020, 2020: 7236534.
    [2]
    马晓倩. 柠檬酸含量对冰糖橙果实贮藏性能的影响及其代谢相关基因分析 [D]. 长沙: 湖南农业大学, 2020.

    MA X Q. Effect of citric acid content on storage performance of 'Bingtang' Sweet Orange and expression analysis of genes in citrate metabolism [D]. ChangSha: Hunan Agricultural University, 2020. (in Chinese)
    [3]
    SADKA A, DAHAN E, COHEN L, et al. Aconitase activity and expression during the development of lemon fruit [J]. Physiologia Plantarum, 2000, 108(3): 255−262. doi: 10.1034/j.1399-3054.2000.108003255.x
    [4]
    BLANKE M M, LENZ F. Fruit photosynthesis[J]. Plant, Cell & Environment, 1989, 12(1): 31-46.
    [5]
    KOYAMA H, TAKITA E, KAWAMURA A, et al. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium [J]. Plant and Cell Physiology, 1999, 40(5): 482−488. doi: 10.1093/oxfordjournals.pcp.a029568
    [6]
    PRACHAROENWATTANA I, CORNAH J E, SMITH S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination [J]. The Plant Cell, 2005, 17(7): 2037−2048. doi: 10.1105/tpc.105.031856
    [7]
    OHLROGGE J, POLLARD M, BAO X, et al. Fatty acid synthesis: From CO2 to functional genomics [J]. Biochemical Society Transactions, 2000, 28(6): 567−573. doi: 10.1042/bst0280567
    [8]
    SCHNARRENBERGER C, MARTIN W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer [J]. European Journal of Biochemistry, 2002, 269(3): 868−883. doi: 10.1046/j.0014-2956.2001.02722.x
    [9]
    ZHAO H N, CHEN G J, SANG L N, et al. Mitochondrial citrate synthase plays important roles in anthocyanin synthesis in petunia [J]. Plant Science:an International Journal of Experimental Plant Biology, 2021, 305: 110835.
    [10]
    TOVAR-MÉNDEZ A, MIERNYK J A, RANDALL D D. Regulation of pyruvate dehydrogenase complex activity in plant cells [J]. European Journal of Biochemistry, 2003, 270(6): 1043−1049. doi: 10.1046/j.1432-1033.2003.03469.x
    [11]
    SADKA A, DAHAN E, OR E, et al. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties [J]. Functional Plant Biology, 2001, 28(5): 383. doi: 10.1071/PP00136
    [12]
    CANEL C, BAILEY-SERRES J N, ROOSE M L. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo ( Citrus maxima) [J]. Plant Molecular Biology, 1996, 31(1): 143−147. doi: 10.1007/BF00020613
    [13]
    IANNETTA P P M, ESCOBAR N M, ROSS H A, et al. Identification, cloning and expression analysis of strawberry ( Fragaria x ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase [J]. Physiologia Plantarum, 2004, 121(1): 15−26. doi: 10.1111/j.0031-9317.2004.00302.x
    [14]
    叶思诚, 姚小华, 王开良, 等. 油茶柠檬酸合成酶(CS)基因的克隆和表达分析 [J]. 植物研究, 2016, 36(4):556−564. doi: 10.7525/j.issn.1673-5102.2016.04.011

    YE S C, YAO X H, WANG K L, et al. Cloning and expression analysis of citrate synthase(CS)gene in Camellia oleifera [J]. Bulletin of Botanical Research, 2016, 36(4): 556−564. (in Chinese) doi: 10.7525/j.issn.1673-5102.2016.04.011
    [15]
    王滕旭, 李正国, 杨迎伍, 等. 甜橙柠檬酸合酶基因的克隆及其表达分析 [J]. 中国农学通报, 2010, 26(10):65−69.

    WANG T X, LI Z G, YANG Y W, et al. Cloning and expression analysis of citrate synthase gene in orange [J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 65−69. (in Chinese)
    [16]
    赵宝庆, 任伟超, 王震, 等. 酸橙柠檬酸合酶基因电子克隆和生物信息学分析 [J]. 东北林业大学学报, 2019, 47(12):79−83.

    ZHAO B Q, REN W C, WANG Z, et al. In silico cloning and bioinformatics analysis of citrate synthase gene from Citrus aurantium [J]. Journal of Northeast Forestry University, 2019, 47(12): 79−83. (in Chinese)
    [17]
    童晋, 詹高淼, 王新发, 等. 油菜柠檬酸合酶基因的克隆及在逆境下的表达 [J]. 作物学报, 2009, 35(1):33−40. doi: 10.3724/SP.J.1006.2009.00033

    TONG J, ZHAN G M, WANG X F, et al. Cloning of citrate synthase gene in rapeseed ( Brassica napus L. ) and its expression under stresses [J]. Acta Agronomica Sinica, 2009, 35(1): 33−40. (in Chinese) doi: 10.3724/SP.J.1006.2009.00033
    [18]
    王俊宁, 刘建文, 李凤娣, 等. 菠萝蜜果实采后糖、酸、蛋白质和VC含量的变化 [J]. 西南师范大学学报(自然科学版), 2015, 40(3):80−85.

    WANG J N, LIU J W, LI F D, et al. On changes in starch, sugar, acids, VC and proteins contents of jackfruit during ripening process [J]. Journal of Southwest China Normal University (Natural Science Edition), 2015, 40(3): 80−85. (in Chinese)
    [19]
    夏春华, 杨转英, 叶春海, 等. 不同株系菠萝蜜果肉中可溶性糖和有机酸的分析 [J]. 果树学报, 2014, 31(4):648−652.

    XIA C H, YANG Z Y, YE C H, et al. Analysis of contents and compositions of soluble sugars and organic acids in different jackfruit( Artocarpus heterophyllus) lines [J]. Journal of Fruit Science, 2014, 31(4): 648−652. (in Chinese)
    [20]
    王俊宁, 吕庆芳, 丰锋, 等. 湿包类型菠萝蜜采后呼吸跃变和主要成分的变化 [J]. 园艺学报, 2014, 41(2):329−334. doi: 10.3969/j.issn.0513-353X.2014.02.014

    WANG J N, LYU Q F, FENG F, et al. Changes in respiration, ethylene and biochemical values of soft jackfruits during the ripening period [J]. Acta Horticulturae Sinica, 2014, 41(2): 329−334. (in Chinese) doi: 10.3969/j.issn.0513-353X.2014.02.014
    [21]
    王俊宁, 陈文耀, 丰锋, 等. 乙烯利处理对菠萝蜜果实催熟的影响 [J]. 广东农业科学, 2014, 41(3):94−98. doi: 10.3969/j.issn.1004-874X.2014.03.023

    WANG J N, CHEN W Y, FENG F, et al. Effect of ethephon treatment on physiological index of jackfruit after harvest [J]. Guangdong Agricultural Sciences, 2014, 41(3): 94−98. (in Chinese) doi: 10.3969/j.issn.1004-874X.2014.03.023
    [22]
    王俊宁, 陈俊鹏, 弓德强, 等. 1-MCP处理对菠萝蜜采后生理效应的影响 [J]. 江西农业大学学报, 2014, 36(1):56−61,96. doi: 10.3969/j.issn.1000-2286.2014.01.009

    WANG J N, CHEN J P, GONG D Q, et al. Effects of 1-MCP treatment on post-harvest physiology of jackfruit( Artocarpus heterophyllus lam. ) [J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1): 56−61,96. (in Chinese) doi: 10.3969/j.issn.1000-2286.2014.01.009
    [23]
    GAO Y Y, YAO Y L, CHEN X, et al. Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development [J]. Frontiers in Plant Science, 2022, 13: 971506. doi: 10.3389/fpls.2022.971506
    [24]
    ZHANG X X, WEI X X, ALI M M, et al. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow ( Passiflora edulis f. flavicarpa) and purple ( Passiflora edulis f. edulis) passion fruits [J]. International Journal of Molecular Sciences, 2021, 22(11): 5765. doi: 10.3390/ijms22115765
    [25]
    李雪梅. 砂梨果实有机酸含量及代谢相关酶活性动态变化研究[D]. 武汉: 华中农业大学, 2008.

    LI X M. Studies on dynamic changes of organic acid contents and metabolizing enzyme activities in sand pear fruit[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese)
    [26]
    朱磊, 陈芸华, 胡禧熙, 等. 葡萄有机酸的研究进展 [J]. 中外葡萄与葡萄酒, 2022, (6):88−95.

    ZHU L, CHEN Y H, HU X X, et al. Research progress of organic acids in grape [J]. Sino-Overseas Grapevine & Wine, 2022(6): 88−95. (in Chinese)
    [27]
    杨滢滢. ‘纽荷尔’脐橙果实柠檬酸合成与降解机理的研究[D]. 南昌: 江西农业大学, 2017.

    YANG Y Y. Research on synthesis and degradation of citric acid in’Newhall’ navel orange fruit[D]. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese)
    [28]
    张秀梅, 杜丽清, 孙光明, 等. 菠萝果实发育过程中有机酸含量及相关代谢酶活性的变化 [J]. 果树学报, 2007, 24(3):381−384. doi: 10.3969/j.issn.1009-9980.2007.03.025

    ZHANG X M, DU L Q, SUN G M, et al. Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit [J]. Journal of Fruit Science, 2007, 24(3): 381−384. (in Chinese) doi: 10.3969/j.issn.1009-9980.2007.03.025
    [29]
    文涛, 熊庆娥, 曾伟光, 等. 脐橙果实发育中有机酸合成代谢酶活性变化的研究 [J]. 四川农业大学学报, 2001, 19(1):27−30.

    WEN T, XIONG Q E, ZENG W G, et al. Study on the change of organic acid synthetase activity during fruit development of navel orange ( Citrus sinesis osbeck) [J]. Journal of Sichuan Agricultural University, 2001, 19(1): 27−30. (in Chinese)
    [30]
    张沛宇. 采后乙烯利脱绿对柠檬果实色泽、风味及抗氧化能力的影响研究[D]. 重庆: 西南大学, 2019.

    ZHANG P Y. Effects of postharvest ethephon degreening on the color, flavor quality and antioxidant capacity of lemon (Citrus limon (L. ) burm. f. ) fruit[D]. Chongqing: Southwest University, 2019. (in Chinese)
    [31]
    LIM S, LEE J G, LEE E J. Comparison of fruit quality and GC-MS-based metabolite profiling of kiwifruit 'Jecy green': Natural and exogenous ethylene-induced ripening [J]. Food Chemistry, 2017, 234: 81−92. doi: 10.1016/j.foodchem.2017.04.163
    [32]
    郭香凤, 向进乐, 史国安, 等. 1-MCP对凯特杏果实采后糖酸组分与含量的影响 [J]. 保鲜与加工, 2008, 8(5):30−33.

    GUO X F, XIANG J Y, SHI G A, et al. Effects of 1-methylcydopropene on sugar and organic acid constituents in katy apricot [J]. Storage and Process, 2008, 8(5): 30−33. (in Chinese)
    [33]
    弓德强, 李敏, 高兆银, 等. 1-甲基环丙烯处理对樱桃番茄果实低温贮藏品质的影响 [J]. 食品与发酵工业, 2022, 48(4):116−122,129.

    GONG D Q, LI M, GAO Z Y, et al. Effect of 1-methylcyclopropene treatment on quality of cherry tomatoes stored at low temperature [J]. Food and Fermentation Industries, 2022, 48(4): 116−122,129. (in Chinese)
    [34]
    石岩. 小金海棠柠檬酸合成酶基因MxCS2的克隆与功能分析[D]. 哈尔滨: 东北农业大学, 2016.

    SHI Y. Cloning and functional analysis of Malus xiaojinensis citrate synthase gene MxCS2[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
    [35]
    张小红. 琯溪蜜柚(Citrus grandis(L. )osbeck. cv. guanxi Miyou)果实采后酸代谢研究[D]. 福州: 福建农林大学, 2005.

    ZHANG X H. Studies on the metabolism of organic acids in Citrus guanxi-miyou (Citrus grandis (L. ) osbeck. cv. guanxi Miyou) fruit after harvest[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese)
    [36]
    张春梅. 枣糖酸代谢及其驯化的分子机制研究[D]. 杨凌: 西北农林科技大学, 2016.

    ZHANG C M. Molecular mechanism related to the metabolism of sugar, acid and domestication for Ziziphus jujuba mill[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
    [37]
    ZHANG G F, XIE S X. Influence of water stress on the citric acid metabolism related gene expression in the ponkan fruits [J]. Agricultural Sciences, 2014, 5(14): 1513−1521. doi: 10.4236/as.2014.514162
    [38]
    文涛, 熊庆娥, 曾伟光, 等. 脐橙果实发育过程中有机酸合成代谢酶活性的变化 [J]. 园艺学报, 2001, 28(2):161−163. doi: 10.3321/j.issn:0513-353X.2001.02.015

    WEN T, XIONG Q E, ZENG W G, et al. Changes of organic acid synthetase activity during fruit development of navel orange( Citrus sinesis osbeck) [J]. Acta Horticulturae Sinica, 2001, 28(2): 161−163. (in Chinese) doi: 10.3321/j.issn:0513-353X.2001.02.015
    [39]
    李航. 两种中国樱桃果实糖酸积累和代谢相关酶及其基因表达的研究[D]. 雅安: 四川农业大学, 2019.

    LI H. Study on sugar and acid accumulation, metabolism enzymes activities and gene expression of two Chinese cherry fruits[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese)
    [40]
    翁金洋. 梅和杏果实糖酸变化规律及有机酸代谢差异研究[D]. 南京: 南京农业大学, 2017.

    WENG J Y. Studies on the change regulation of sugar and acid and the metabolism of organic acids in Prunus mume and apricot fruits[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
    [41]
    王羊, 邓倩, 邓群仙, 等. “蜀脆枣” 果实发育过程中糖酸代谢相关基因表达分析 [J]. 西北农业学报, 2022, 31(7):876−885. doi: 10.7606/j.issn.1004-1389.2022.07.009

    WANG Y, DENG Q, DENG Q X, et al. Analysis of sugar and organic acid metabolism-related genes expression during development of Ziziphus jujuba cv. “Shucuizao” fruits [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(7): 876−885. (in Chinese) doi: 10.7606/j.issn.1004-1389.2022.07.009
    [42]
    LIU J H, CHI G H, JIA C H, et al. Function of a citrate synthase gene (MaGCS) during postharvest banana fruit ripening [J]. Postharvest Biology and Technology, 2013, 84: 43−50. doi: 10.1016/j.postharvbio.2013.04.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (31) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return