• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents
HONG S R, HUANG D D, HUANG S H, et al. Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum [J]. Fujian Journal of Agricultural Sciences,2021,36(1):1−12
Citation: HONG S R, HUANG D D, HUANG S H, et al. Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum [J]. Fujian Journal of Agricultural Sciences,2021,36(1):1−12

Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum

  • Received Date: 2020-09-30
  • Rev Recd Date: 2020-11-07
  • Available Online: 2020-11-24
  •   Objective  Transcriptomes of differentially expressed genes related to flavonoids synthesis in tubers of two Huaiyushan cultivated varieties of Tetrastigma hemsleyanum Diels et Gilg were compared.   Method   Tubers from Huaiyu 1 (HY1) and Huaiyu 2 (HY2) were used for the transcriptome determination by PCR analysis.   Result  HY1 and HY2 had clean reads of 42 311 662 and 41 411 202, respectively, and no less than 95.75% of Q30 base. Their transcription factors basically belonged to the MYB-superfamily, bHLH, AP2/ERF, NAC, C2C2, WRKY, etc. The paired values of FPKM in HY1 and HY2 were between 0 and 2; the expression densities, between 0 and 0.7; the number of commonly expressed genes, 22 367; and, the number of uniquely expressed genes in HY1, 18 196, while 8 137 in HY2. The correlation between the expressions of the two had a coefficient of 0.913, and that between the samples was high. There were 12 199 differentially expressed genes between the two, with 3 551 upregulated and 8 648 downregulated in HY2 as compared to HY1. The GO enrichment analysis showed that the differential genes were mainly annotated into photosynthesis, light harvesting in photosystem I, photosynthesis, light harvesting, chlorophyll metabolic process, protein-chromophore linkage, generation of precursor metabolites and energy, chlorophyll biosynthetic process, response to oxidative stress, alpha-amino acid metabolic process, photosynthesis, plastoglobule, photosystem I, photosystem II, plastid nucleoid, photosystem, chlorophyll binding, monooxygenase activity, iron ion binding, heme binding, lyase activity, etc. Whereas, the KEGG enrichment analysis indicated the differential genes to be mainly annotated into photosynthesis-antenna proteins, ribosome, glyoxylate and dicarboxylate metabolism, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, photosynthesis, carbon fixation in photosynthetic organisms, glycine, serine and threonine metabolism, plant hormone signal transduction, glutathione metabolism, pyruvate metabolism, phenylalanine metabolism, circadian rhythm-plant, flavone and flavonol biosynthesis, cysteine and methionine metabolism, cyanoamino acid metabolism, carotenoid biosynthesis, alpha-linolenic acid metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways.   Conclusion  The differentially expressed genes related to flavonoids synthesis, such as stilbene synthase, leucoanthocyanidin dioxygenase, CHI protein, chalcone synthase 2, flavanone 3-hydroxylase and lleucoanthocyanidin reductase 1 and flavonoid 3’- hydroxylase gene were upregulated in HY2, while chalcone synthase, flavonol synthase and flavonoid 3’, 5’-methyltransferase downregulated. The variations apparently resulted in the differences shown on the total flavonoid content between the HY1 and HY2 tubers.
  • loading
  • [1]
    叶子飘, 谢志亮, 段世华, 等. 设施栽培条件下三叶青叶片光合的气孔和非气孔限制 [J]. 植物生理学报, 2020, 56(1):41−48.

    YE Z P, XIE Z L, DUAN S H, et al. Stomatal and non-stomatal limitation of photosynthesis for Tetrastigma hemsleyanum under the condition of facility cultivation [J]. Plant Physiology Journal, 2020, 56(1): 41−48.(in Chinese)
    [2]
    SUN Y, LI H Y, HU J N, et al. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10507−10515. doi: 10.1021/jf4037547
    [3]
    ZHONG L R, ZHENG J X, SUN Q Q, et al. Radix tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells [J]. OncoTargets and Therapy, 2016, 9(1): 635−641.
    [4]
    FENG Z Q, HAO W R, LIN X Y, et al. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice [J]. OncoTargets and Therapy, 2014, 7: 947−956.
    [5]
    PENG X, ZHANG Y Y, WANG J, et al. Ethylacetate extract from Tetrastigma hemsleyanum induces apoptosis via the mitochondrial caspase-dependent intrinsic pathway in HepG2 cells [J]. Tumor Biology, 2016, 37(1): 865−876. doi: 10.1007/s13277-015-3579-8
    [6]
    XU C J, DING G Q, FU J Y, et al. Immunoregulatory effects of ethyl-acetate fraction of extracts from Tetrastigma hemsleyanum Diels et. gilg on immune functions of ICR mice [J]. Biomedical and Environmental Sciences, 2008, 21(4): 325−331. doi: 10.1016/S0895-3988(08)60050-1
    [7]
    李士敏, 李强, 孙崇鲁, 等. 基于多模式识别结合指纹图谱的三叶青产地鉴别比较研究 [J]. 中草药, 2020, 51(1):197−203. doi: 10.7501/j.issn.0253-2670.2020.01.026

    LI S M, LI Q, SUN C L, et al. Comparative study on multiple chemical pattern recognition combined with fingerprint ofTetrastigma hemsleyanum from different habitats [J]. Chinese Traditional and Herbal Drugs, 2020, 51(1): 197−203.(in Chinese) doi: 10.7501/j.issn.0253-2670.2020.01.026
    [8]
    SUN Y, HUI Q R, CHEN R, et al. Apoptosis in human hepatoma HepG2 cells induced by the phenolics of Tetrastigma hemsleyanum leaves and their antitumor effects in H22 tumor-bearing mice [J]. Journal of Functional Foods, 2018, 40: 349−364. doi: 10.1016/j.jff.2017.11.017
    [9]
    SUN Y, QIN Y, LI H Y, et al. Rapid characterization of chemical constituents in Radix Tetrastigma, a functional herbal mixture, before and after metabolism and their antioxidant/antiproliferative activities [J]. Journal of Functional Foods, 2015, 18: 300−318. doi: 10.1016/j.jff.2015.07.009
    [10]
    SUN Y, TSAO R, CHEN F, et al. The phytochemical composition, metabolites, bioavailability and in vivo antioxidant activity of Tetrastigma hemsleyanum leaves in rats [J]. Journal of Functional Foods, 2017, 30: 179−193. doi: 10.1016/j.jff.2017.01.004
    [11]
    SUN Y, TSAO R, CHEN F, et al. The phenolic profiles of Radix tetrastigma after solid phase extraction (SPE) and their antitumor effects and antioxidant activities in H22 tumor-bearing mice [J]. Food & Function, 2017, 8(11): 4014−4027.
    [12]
    LU T, LU G, FAN D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq [J]. Genome Research, 2010, 20(9): 1238−1249. doi: 10.1101/gr.106120.110
    [13]
    WANG Z Y, FANG B P, CHEN J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas) [J]. BMC Genomics, 2010, 14: 125−135.
    [14]
    ZHANG J N, LIANG S, DUAN J L, et al. De novo assembly and Characterisation of the Transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.) [J]. BMC Genomics, 2012, 13(1): 90−95. doi: 10.1186/1471-2164-13-90
    [15]
    魏俊雯, 张声祥, 施圆圆, 等. 基于转录组测序的牛蒡木质素类物质生物合成途径及关键酶基因分析 [J]. 中草药, 2020, 51(16):4300−4307. doi: 10.7501/j.issn.0253-2670.2020.16.026

    WEI J W, ZHANG S X; SHI Y Y. Transcriptome analysis reveals key enzyme genes involved in lignin biosynthesis pathway in Arctium lappa [J]. Chinese Traditional and Herbal Drugs, 2020, 51(16): 4300−4307.(in Chinese) doi: 10.7501/j.issn.0253-2670.2020.16.026
    [16]
    孙健, 沈晓霞, 陈加红, 等. 药用植物三叶青种质多样性与栽培管理的研究进展 [J]. 科技通报, 2018, 34(1):13−17.

    SUN J, SHEN X X, CHEN J H, et al. Germplasm diversity and cultural management of the medicinal plant Tetrastigma hemsleyanum [J]. Bulletin of Science and Technology, 2018, 34(1): 13−17.(in Chinese)
    [17]
    林国卫, 闻静, 石光禹, 等. 侵染怀玉山三叶青的病毒 RT-PCR 鉴定 [J]. 分子植物育种, 2020, 18(3):968−975.

    LIN G W, WEN J, SHI G Y, et al. Identification of Viruses Infecting Huaiyushan Tetrastigma hemsleyanum Diels et Gilg by RT-PCR [J]. Molecular Plant Breeding, 2020, 18(3): 968−975.(in Chinese)
    [18]
    张雪松, 裴建军, 赵林果, 等. 不同品种桂花转录组分析及桂花精油成分差异的初步探讨 [J]. 天然产物研究与开发, 2016, 28(4):529−535.

    ZHANG X S, PEI J J, ZHAO L G, et al. Transcriptome analysis of different Osmanthus reveals insight into the difference of Osmanthus oil components [J]. Natural Product Research and Development, 2016, 28(4): 529−535.(in Chinese)
    [19]
    张驰, 高振蕊, 董友魁, 等. 四个大豆栽培种的花序转录组分析 [J]. 生态学杂志, 2015, 34(12):3391−3396.

    ZHANG C, GAO Z R, DONG Y K, et al. Transcriptome analysis of inflorescences from four soybean cultivars [J]. Chinese Journal of Ecology, 2015, 34(12): 3391−3396.(in Chinese)
    [20]
    成启明, 格根图, 撒多文, 等. 不同品种紫花苜蓿转录组分析及营养品质差异的探讨 [J]. 草业学报, 2019, 28(10):199−208. doi: 10.11686/cyxb2018721

    CHENG Q M, GE G T, SA D W, et al. Transcriptome analyses provide insights into differences in nutritional quality in different alfalfa varieties [J]. Acta Prataculturae Sinica, 2019, 28(10): 199−208.(in Chinese) doi: 10.11686/cyxb2018721
    [21]
    王宇, 陈 楠, 袁启凤, 等. 3个不同品种百香果转录组分析 [J]. 种子, 2019, 38(5):1−7.

    WANG Y, CHEN N, YUAN Q F, et al. Transcriptome analysis of three different varieties of passion fruit [J]. Seed, 2019, 38(5): 1−7.(in Chinese)
    [22]
    ZHANG J, SUBRAMANIAN S, STACEY G, et al. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti [J]. The Plant Journal, 2009, 57(1): 171−183. doi: 10.1111/j.1365-313X.2008.03676.x
    [23]
    TREUTTER D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis [J]. Plant Biology, 2005, 7(6): 581−591. doi: 10.1055/s-2005-873009
    [24]
    FOWLER Z L, KOFFAS M A G. Biosynthesis and biotechnological production of flavanones: current state and perspectives [J]. Applied Microbiology and Biotechnology, 2009, 83(5): 799−808. doi: 10.1007/s00253-009-2039-z
    [25]
    HAIN R, REIF H J, KRAUSE E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant [J]. Nature, 1993, 361(6408): 153−156. doi: 10.1038/361153a0
    [26]
    POULSEN M M, FJELDBORG K, ORNSTRUP M J, et al. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2015, 1852(6): 1124−1136. doi: 10.1016/j.bbadis.2014.12.024
    [27]
    HOLME A L, PERVAIZ S. Resveratrol in cell fate decisions [J]. Journal of Bioenergetics and Biomembranes, 2007, 39(1): 59−63. doi: 10.1007/s10863-006-9053-y
    [28]
    AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73−90. doi: 10.1016/j.tplants.2011.11.002
    [29]
    CHONG J L, POUTARAUD A, HUGUENEY P. Metabolism and roles of stilbenes in plants [J]. Plant Science, 2009, 177(3): 143−155. doi: 10.1016/j.plantsci.2009.05.012
    [30]
    吴凤颖, 刘梦琦, 王跃进, 等. 中国野生毛葡萄芪合酶基因抗白粉病功能分析 [J]. 园艺学报, 2020, 47(2):205−219.

    WU F Y, LIU M Q, WANG Y J, et al. Function analysis of the stilbene synthase genes VqSTS12 and VqSTS25 of the resistance to powdery mildew in vitis quinquangularis [J]. Acta Horticulturae Sinica, 2020, 47(2): 205−219.(in Chinese)
    [31]
    李娟, 刘海峰, 曹芳芳, 等. 山葡萄无色花色素双加氧酶基因(LDOX)cDNA的克隆与表达 [J]. 西北农业学报, 2016, 25(1):103−108. doi: 10.7606/j.issn.1004-1389.2016.01.014

    LI J, LIU H F, CAO F F, et al. Cloning and Analysis of Leucoanthocyanidin Dioxygenase(LDOX)inVitis amurensis Rupr [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(1): 103−108.(in Chinese) doi: 10.7606/j.issn.1004-1389.2016.01.014
    [32]
    APPELHAGEN I, JAHNS O, BARTELNIEWOEHNER L, et al. Leucoanthocyanidin Dioxygenase in Arabidopsis thaliana: Characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes [J]. Gene, 2011, 484(1/2): 61−68.
    [33]
    TANNER G J, FRANCKI K T, ABRAHAMS S, et al. Proanthocyanidin biosynthesis in plants [J]. Journal of Biological Chemistry, 2003, 278(34): 31647−31656. doi: 10.1074/jbc.M302783200
    [34]
    HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. The Plant Cell, 1995: 1071−1083.
    [35]
    蔡建平, 侯和胜. 葡萄查耳酮合酶基因克隆及其进化分析 [J]. 天津农业科学, 2015, 21(1):6−8. doi: 10.3969/j.issn.1006-6500.2015.01.002

    CAI J P, HOU H S. Cloning and Evolution Analysis of Chalcone Synthase from Vitis vinifera [J]. Tianjin Agricultural Sciences, 2015, 21(1): 6−8.(in Chinese) doi: 10.3969/j.issn.1006-6500.2015.01.002
    [36]
    CHENG H, LI L L, CHENG S Y, et al. Molecular cloning and function assay of a Chalcone isomerase gene (GbCHI) from Ginkgo biloba [J]. Plant Cell Reports, 2011, 30(1): 49−62. doi: 10.1007/s00299-010-0943-4
    [37]
    尹峰, 龙月红, 冯若宣, 等. 多穗柯黄酮 3-羟化酶基因的克隆与序列分析 [J]. 中草药, 2017, 48(24):5085−5089. doi: 10.7501/j.issn.0253-2670.2017.24.005

    YIN F, LONG Y H, FENG R X, et al. Cloning of flavanone 3-hydroxylase gene from Lithocarpus polystachyus and its sequence analysis [J]. Chinese Traditional and Herbal Drugs, 2017, 48(24): 5085−5089.(in Chinese) doi: 10.7501/j.issn.0253-2670.2017.24.005
    [38]
    YANG H, AHN J H, IBRAHIM R K, et al. The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homologybased modelling [J]. Journal of Molecular Graphics & Modelling, 2004, 23(1): 77−87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (112) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return