• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents
PAN J Y, PAN R Y, JIANG W J, et al. Identification and expression analysis of YUCCA gene family in Passiflora edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−11
Citation: PAN J Y, PAN R Y, JIANG W J, et al. Identification and expression analysis of YUCCA gene family in Passiflora edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(2):1−11

Identification and expression analysis of YUCCA gene family in Passiflora edulis

  • Received Date: 2023-09-11
  • Rev Recd Date: 2023-11-13
  • Available Online: 2024-03-28
  •   Objective  YUCCA gene encodes flavin monooxygenase, which is one of the main rate-limiting enzyme genes in the biosynthesis of Indole-3-acetic acid (IAA), and plays an important role in regulating plant growth and development. In this study, bioinformatics methods were used to identify members of the YUCCA gene family in Passiflora edulis Sims. In order to reveal the function of YUCCA family genes in hormone response, and provide references for bioinformatics studies of YUCCA family genes in other species.   Methods  The physicochemical properties and conserved domains of the encoded proteins, chromosome location, gene structure, phylogenetic tree and cis-acting elements of the genes were analyzed. qRT-PCR was used to explore the expression of some members treated with exogenous hormone IAA.   Results  A total of 29 YUCCA family members were identified in the passion fruit genome, unevenly distributed in 8 chromosomes. YUCCA gene structure analysis of passion fruit showed significant differences in the length of different genes, containing 1~8 introns and 8 conserved motifs. Through phylogenetic tree analysis, it was found that the YUCCA gene family of passion fruit can be divided into three distinct categories, and the YUCCA genes clustered in the same classification have high conservation. It was also found that the YUCCA gene of passion fruit was more closely related to alfalfa (Medicago sativa L.) and Arabidopsis thaliana, but more closely related to rice (Oryza sativa L.). Cis-acting element analysis showed that the promoter of YUCCA gene family of passion fruit was induced by various hormones and could respond to various stresses. Transcriptome data analysis showed that PeYUCCA6, PeYUCCA11 and PeYUCCA16 showed low or no expression in the leaves of Tainon and golden passion fruit, and the expression of PeYUCCA23 was the highest in Tainon and golden passion fruit, suggesting that this gene had a high effect on the development of passion fruit leaves. The results of qRT-PCR analysis showed that the expressions of PeYUCCA7, PeYUCCA13, PeYUCCA17, PeYUCCA24 and PeYUCCA26 genes were significantly increased after 100 μmol·L-1 IAA treatment.  Conclusion  The expression of YUCCA gene family members varies greatly under IAA treatment. YUCCA gene may play an important role in the growth and development of passion fruit and the resistance to adverse environment under growth regulator IAA.
  • loading
  • [1]
    贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展 [J]. 植物学报, 2022, 57(3):263−275. doi: 10.11983/CBB21227

    JIA L X, QI Y H. Advances in the regulation of rice( Oryza sativa)grain shape by auxin metabolism, transport and signal transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263−275. (in Chinese) doi: 10.11983/CBB21227
    [2]
    李中华. 多组学数据揭示棉花纤维发育转换期的遗传调控机制和重要代谢物[D]. 武汉: 华中农业大学, 2021.

    LI Z H. Multiomics data reveal the genetic regulation mechanism and important metabolites of cotton fiber development transition period[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
    [3]
    莫福磊, 束艺, 陈秀玲, 等. 基于全基因组的番茄YUCCA基因家族生物信息学分析 [J]. 分子植物育种, 2020, 18(10):3159−3163.

    MO F L, SHU Y, CHEN X L, et al. Bioinformatics analysis of tomato YUCCA gene family based on whole genome [J]. Molecular Plant Breeding, 2020, 18(10): 3159−3163. (in Chinese)
    [4]
    刘华彬, 张秦莹, 门淑珍. YUCCA基因家族在拟南芥胚胎发育过程中的表达模式研究 [J]. 南开大学学报(自然科学版), 2017, 50(4):1−7.

    LIU H B, ZHANG Q Y, MEN S Z. The expression patterns of YUCCA during embryo development in Arabidopsis [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2017, 50(4): 1−7. (in Chinese)
    [5]
    李莉萍. 西番莲综合开发利用研究进展 [J]. 安徽农业科学, 2012, 40(28):13840−13843,13846. doi: 10.3969/j.issn.0517-6611.2012.28.062

    LI L P. Research progress of comprehensive development and utilization of passionflower [J]. Journal of Anhui Agricultural Sciences, 2012, 40(28): 13840−13843,13846. (in Chinese) doi: 10.3969/j.issn.0517-6611.2012.28.062
    [6]
    LI C B, XIN M, LI L, et al. Characterization of the aromatic profile of purple passion fruit ( Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing [J]. Food Chemistry, 2021, 355: 129685. doi: 10.1016/j.foodchem.2021.129685
    [7]
    FONSECA A M A, GERALDI M V, JUNIOR M R M, et al. Purple passion fruit ( Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects [J]. Food Research International, 2022, 160: 111665. doi: 10.1016/j.foodres.2022.111665
    [8]
    XU M X, LI A D, TENG Y, et al. Exploring the adaptive mechanism of Passiflora edulis in Karst areas via an integrative analysis of nutrient elements and transcriptional profiles [J]. BMC Plant Biology, 2019, 19(1): 185. doi: 10.1186/s12870-019-1797-8
    [9]
    XIA Z Q, HUANG D M, ZHANG S K, et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims) [J]. Horticulture Research, 2021, 8: 14. doi: 10.1038/s41438-020-00455-1
    [10]
    CHENG Y F, DAI X H, ZHAO Y D. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis [J]. Genes & Development, 2006, 20(13): 1790−1799.
    [11]
    YAMAMOTO Y, KAMIYA N, MORINAKA Y, et al. Auxin biosynthesis by the YUCCA genes in rice [J]. Plant Physiology, 2007, 143(3): 1362−1371. doi: 10.1104/pp.106.091561
    [12]
    LI W L, ZHAO X Y, ZHANG X S. Genome-wide analysis and expression patterns of the YUCCA genes in maize [J]. Journal of Genetics and Genomics, 2015, 42(12): 707−710. doi: 10.1016/j.jgg.2015.06.010
    [13]
    ZHAO B L, HE L L, JIANG C, et al. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula [J]. The New Phytologist, 2020, 227(2): 613−628. doi: 10.1111/nph.16539
    [14]
    袁美同, 李绍信, 纪丕钰, 等. 梨 YUCCA基因家族的鉴定与生物信息学分析 [J]. 分子植物育种, 2021, 19(19):6328−6337.

    YUAN M T, LI S X, JI P Y, et al. Identification and bioinformatics analysis of YUCCA gene family in Pyrus [J]. Molecular Plant Breeding, 2021, 19(19): 6328−6337. (in Chinese)
    [15]
    李志谦, 邹东方, 李靖雯, 等. 葡萄YUCCA家族基因的鉴定及在穗梗褪绿过程中的表达分析 [J]. 河南农业大学学报, 2022, 56(2):254−261. doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010

    LI Z Q, ZOU D F, LI J W, et al. Genome-wide identification of YUCCA gene family in grape and expression analysis during rachis degreening [J]. Journal of Henan Agricultural University, 2022, 56(2): 254−261. (in Chinese) doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010
    [16]
    张倩倩, 田守蔚, 张洁, 等. 西瓜YUCCA基因家族鉴定及在果实成熟过程中的表达分析 [J]. 中国蔬菜, 2019, (3):21−29.

    ZHANG Q Q, TIAN S W, ZHANG J, et al. Identification of YUCCA gene family and expression analysis during watermelon fruit ripening process [J]. China Vegetables, 2019(3): 21−29. (in Chinese)
    [17]
    ZHANG Y Y, MAO Q S, MA R J, et al. Genome-wide identification and expression analysis of the PpYUCCA gene family in weeping peach trees ( Prunus persica ‘pendula’) [J]. Horticulturae, 2022, 8(10): 878. doi: 10.3390/horticulturae8100878
    [18]
    MA D N, DONG S S, ZHANG S C, et al. Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit ( Passiflora edulis) [J]. Molecular Ecology Resources, 2021, 21(3): 955−968. doi: 10.1111/1755-0998.13310
    [19]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [20]
    何锐杰, 方庭, 余伟军, 等. 西番莲查尔酮合成酶(CHS)基因家族全基因组鉴定及表达模式 [J]. 应用与环境生物学报, 2022, 28(4):1066−1075.

    HE R J, FANG T, YU W J, et al. Genome-wide identification and expression analysis of the CHS gene family in passion fruit [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1066−1075. (in Chinese)
    [21]
    TRIPATHI P, TAYADE R, MUN B G, et al. Silicon application differentially modulates root morphology and expression of PIN and YUCCA family genes in soybean ( Glycine max L. ) [J]. Frontiers in Plant Science, 2022, 13: 842832. doi: 10.3389/fpls.2022.842832
    [22]
    梁栋. IAA和BR参与干旱胁迫影响烟草侧根发育的研究[D]. 北京: 中国农业科学院, 2021.

    LIANG D. Study on IAA and BR participating in drought stress affecting tobacco lateral root development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
    [23]
    李真. 毛白杨PtoWOX11/12a基因的抗逆功能研究[D]. 北京: 中国林业科学研究院, 2017.

    LI Z. Functional characterization of A PtoWOX11/12a gene in stress resistance of Populus tomentosa[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese)
    [24]
    李孟湛. SAUR15调控植物侧根及不定根发育的功能及分子机理研究[D]. 兰州: 兰州大学, 2022.

    LI M Z. Functions and molecular mechanisms of SAUR15 in regulating development of plant lateral and adventitious roots[D]. Lanzhou: Lanzhou University, 2022. (in Chinese)
    [25]
    阚东阳, 柯学, Walid Ghidan, 等. 拟南芥图位克隆快速初定位系统的建立 [J]. 西南农业学报, 2018, 31(9):1765−1771.

    KAN D Y, KE X, WALID G, et al. Establishment of rapid initial localization system of Arabidopsis based on map-based cloning [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1765−1771. (in Chinese)
    [26]
    丁义峰. 生长素相关基因调控桃果实成熟分子机制研究[D]. 武汉: 华中农业大学, 2018.

    DING Y F. Molecular mechanism of auxin related genes regulating peach fruit ripening[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
    [27]
    ABEL S, NGUYEN M D, THEOLOGIS A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana [J]. Journal of Molecular Biology, 1995, 251(4): 533−549. doi: 10.1006/jmbi.1995.0454
    [28]
    YAMAGUCHI N, WINTER C M, WU M F, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis [J]. Science, 2014, 344(6184): 638−641. doi: 10.1126/science.1250498
    [29]
    金晓蕾. 外源激素对甜荞开花结实的影响及调控机制研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

    JIN X L. Effect and regulation mechanism of exogenous hormones on flowering and fruiting in common buckwheat[D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (37) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return