Changes of Microbial Community in Agaricus bisporus Culture Substrate during Fermentation
-
摘要:
目的 了解双孢蘑菇培养料发酵过程中微生物的群落动态变化趋势及其发挥的作用。 方法 以优化的复合菌渣(金针菇和杏鲍菇菌渣)作为双孢蘑菇培养料的主要成分,采用PacBio平台、高通量 16S rDNA全长测序方法,分析双孢蘑菇培养料由建堆、第一次发酵、第二次发酵过程中的7个阶段(Ag1~Ag7)的细菌群落特征。 结果 在7个阶段的发酵培养料中共获得的OUT数量分别为328、340、294、377、364、166、174个,共计715个,其中有161个 OTU 存在于发酵的7个阶段,涵盖了21 门 299 属399种的细菌。Fimicutes(厚壁菌门)、Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门),Gemmatimonadetes(芽单胞菌门)在7个阶段中丰度较高。在建堆和第一次发酵过程中Ureibacillus(解脲芽孢杆菌属)为主要优势类群,在第二次发酵过程中Limnochordaceae、S0134 terrestrial group、Thermobacillus(嗜热杆菌属)、Ruminiclostridium(瘤胃梭菌属)的相对丰度更高。在种分类水平,Ureibacillus thermophilus和Ureibacillus terrenus是建堆和第一次发酵过程中的优势菌种,Limnochordaceae属的菌种在第二次发酵中相对丰度最高。上述研究结果表明:在第二次发酵之前细菌种类和丰度随着发酵过程不断升高,第一次发酵和第二次发酵样本间细菌群落结构差异较大,并在二次发酵后显著降低,而且这些优势菌群主要参与物质降解,从而提高了双孢蘑菇培养料质量。 结论 通过全长测序的方法能更好地在种水平对不同发酵阶段的优势菌种进行鉴定,同时还发现了很多未分类的细菌物种,为优化发酵培养料和提高双孢蘑菇产量提供了理论依据。 -
关键词:
- 双孢蘑菇 /
- 培养料 /
- 发酵 /
- 16S全长扩增子测序 /
- 细菌群落
Abstract:Objective Changes of the microbial community in fermentation of substrates for cultivating Agaricus bisporus were investigated. Method The microbial community characteristics of a compound A. bisporus culture substrates containing spent Flammulina velutiper and Pleurotus eryngii materials were monitored during the 7 stages, Ag1 to Ag7 from pile building to 1st and 2nd fermentation, using the high throughput 16S rDNA full-length sequencing of Pacbio platform. Result A total of 715 OTUs were obtained in the fermentation process (i.e., 328, 340, 294, 377, 364, 166, and 174 for each stage) with 161 OTUs commonly found in all stage. The microbes included 21 phyla, 299 genera, and 399 species. At phylum level, Fimicutes, Proteobacteria, Bacteroidetes, and Gemmatimonadetes had higher abundance in all 7 stages. The dominant genus in the substrate during the pile building and 1st fermentation stages was Ureibacillus, while Limnochordaceae, S0134_terrestrial_group, Thermobacillu, and Ruminiclostridium stood out in the 2nd fermentation stage. At species level, Ureibacillus thermophilus and Ureibacillus terrenus were dominant in the pile building and 1st fermentation stages. In the 2nd fermentation stage, the species in the genus of Limnochordaceae were the greatest in relative abundance. It appeared that the microbial abundance and diversity increased gradually before the onset of 2nd fermentation. The community structure of the substrate varied significantly between the 1st and the 2nd fermentation, but the deviation diminished significantly after the 2nd fermentation leaving mostly the dominant species that basically functioned to degrade the waste mushroom material enriching the fertilization effect. Conclusion The full-length sequencing technology clearly identified the dominant species unveiling many previously unclassified microorganisms. The results helped to better optimize the substrate fermentation process for an improved cultivation of A. bisporus. -
Key words:
- Agaricus bisporus /
- culture substrates /
- fermentation /
- 16s full-length sequencing /
- bacterial community
-
图 2 Alpha多样性指数组间差异柱状图
A−B:不同样品的ACE和Chao1指数,纵坐标表示样品中的OUT数目;C−E: 不同样品的PD_whole_tree,Shannon和Simpson指数,纵坐标表示样品中物种多样性。*. 差异显著 (P<0.05); **. 差异极显著 (P<0.01)。
Figure 2. Histogram of alpha diversity index
A-B: ACE and Chao1 indices of sample, Y-axis for number of OUT; C-E: PD_whole_tree and Shannon and Simpson indices of sample, respectively, Y-axis for species diversity; *: Significant difference at P<0.05; **: Extremely significant difference at P<0.01.
表 1 培养料理化指标
Table 1. Physiochemical indicators of substrate
编号
Sample ID取样时期
Sampling period干重
Dry weight/g水分
MoisturepH Ag1 建堆 47.07 73.92% 5.16 Ag2 一次翻堆 50.00 71.85% 5.35 Ag3 二次翻堆 50.48 72.26% 5.66 Ag4 三次翻堆 34.8 71.58% 5.55 Ag5 四次翻堆 52.24 71.56% 6.71 Ag6 二次发酵巴氏消毒结束 28.42 66.50% 8.36 Ag7 二次发酵全过程结束 43.95 62.08% 7.64 -
[1] RAMOS M, BURGOS N, BARNARD A, et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds [J]. Food Chemistry, 2019, 292: 176−187. doi: 10.1016/j.foodchem.2019.04.035 [2] VIEIRA F R, PECCHIA J A. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting–phase II) for Agaricus bisporus cultivation [J]. Microbial Ecology, 2018, 75(2): 318−330. doi: 10.1007/s00248-017-1026-7 [3] 杨立宇, 李金红. 双孢蘑菇培养料二次发酵简易技术 [J]. 现代农业科技, 2008(3):41. doi: 10.3969/j.issn.1007-5739.2008.03.026YANG L Y, LI J H. Simple technology of secondary fermentation of Agaricus bisporus [J]. Modern Agricultural Science and Technology, 2008(3): 41.(in Chinese) doi: 10.3969/j.issn.1007-5739.2008.03.026 [4] 曹海. 双孢菇高产优质高效栽培技术 [J]. 现代农业科技, 2013(17):143−144. doi: 10.3969/j.issn.1007-5739.2013.17.086CAO H. High yield, high quality, and high efficiency cultivation technology of Agaricus bisporus [J]. Modern Agricultural Science and Technology, 2013(17): 143−144.(in Chinese) doi: 10.3969/j.issn.1007-5739.2013.17.086 [5] MORETTI M M, BOCCHINI-MARTINS D A, SILVA R D, et al. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation [J]. Brazilian Journal of Microbiology, 2012, 43(3): 1062−1071. doi: 10.1590/S1517-83822012000300032 [6] SHARMA H S S, LYONS G, CHAMBERS J. Comparison of the changes in mushroom (Agaricus bisporus) compost during windrow and bunker stages of phase I and II [J]. Annals of Applied Biology, 2000, 136(1): 59−68. doi: 10.1111/j.1744-7348.2000.tb00009.x [7] 秦宇蒙, 周笑犁, 管庆林, 等. 基于高通量测序分析番茄自然发酵过程中的真菌多样性 [J]. 福建农业学报, 2021, 36(9):1110−1118. doi: 10.19303/j.issn.1008-0384.2021.09.017QIN Y M, ZHOU X L, GUAN Q L, et al. Fungal diversity in natural tomato fermentation as shown by high-throughput sequencing [J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1110−1118.(in Chinese) doi: 10.19303/j.issn.1008-0384.2021.09.017 [8] 李云福, 李正风, 董高峰, 等. 双孢蘑菇培养料发酵过程中细菌群落动态变化 [J]. 菌物研究, 2019, 17(2):94−102. doi: 10.13341/j.jfr.2019.1253LI Y F, LI Z F, DONG G F, et al. Dynamics of bacterial communities of Agaricus bisporus compost [J]. Journal of Fungal Research, 2019, 17(2): 94−102.(in Chinese) doi: 10.13341/j.jfr.2019.1253 [9] 隽加香, 肖婷婷, 王倩, 等. 双孢蘑菇发酵培养料细菌菌群结构及其功能预测 [J]. 食用菌学报, 2019, 26(4):50−56. doi: 10.16488/j.cnki.1005-9873.2019.04.007JUAN J X, XIAO T T, WANG Q, et al. Microbial population during composting of Agaricus bisporus culture substrate and functional prediction thereof [J]. Acta Edulis Fungi, 2019, 26(4): 50−56.(in Chinese) doi: 10.16488/j.cnki.1005-9873.2019.04.007 [10] MATSUMOTO T, SUGANO M. 16S rRNA gene sequence analysis for bacterial identification in the clinical laboratory [J]. Rinsho Byori the Japanese Journal of Clinical Pathology, 2013, 61(12): 1107−1115. [11] 许亚昆, 马越, 胡小茜, 等. 基于三代测序技术的微生物组学研究进展 [J]. 生物多样性, 2019, 27(5):534−542. doi: 10.17520/biods.2018201XU Y K, MA Y, HU X X, et al. Analysis of prospective microbiology research using third-generation sequencing technology [J]. Biodiversity Science, 2019, 27(5): 534−542.(in Chinese) doi: 10.17520/biods.2018201 [12] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Frontiers in Plant Science, 2013, 10(10): 996−998. [13] PRUESSE E, QUAST C, KNITTEL K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB [J]. Nucleic Acids Research, 2007, 35(21): 7188−7196. doi: 10.1093/nar/gkm864 [14] 高晓静, 张昊琳, 佟佳兴, 等. 不同配方双孢蘑菇培养料的细菌群落结构和理化性状 [J]. 应用与环境生物学报, 2017(3):502−510.GAO X J, ZHANG H L, TONG J X, et al. Bacterial community structure and physical-chemical properties of different formulations of cultivated mushroom(Agaricus bisporus) composts [J]. Chinese Journal of Applied and Environmental Biology, 2017(3): 502−510.(in Chinese) [15] 刘灿, 生吉萍, 邹积华, 等. 双孢菇培养基堆制产热过程中微生物变化对其理化性质的影响 [J]. 食品科学, 2010(13):240−243.LIU C, SHENG J P, ZOU J H, et al. Effects of microbial changes on physical and chemical characteristics of Agaricus bisporus compost during fermentation [J]. Food Science, 2010(13): 240−243.(in Chinese) [16] 侯晓伟, 王晓巍, 陈年来, 等. 双孢蘑菇培养料发酵微生物变化对其理化性质的影响研究 [J]. 中国农学通报, 2014, 30(25):111−115. doi: 10.11924/j.issn.1000-6850.2014-0552HOU X W, WANG X W, CHEN N L, et al. Study of the influence of microorganisms in the process of Agaricus bisporus compost fermentation on its physical and chemical properties [J]. Chinese Agricultural Science Bulletin, 2014, 30(25): 111−115.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-0552 [17] WANG Y, LIU L, YANG J, et al. The diversity of microbial community and function varied in response to different agricultural residues composting [J]. Sci Total Environ, 2020, 715: 136983. doi: 10.1016/j.scitotenv.2020.136983 [18] FORTINA M G, PUKALL R, SCHUMANN P, et al. Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov [J]. International journal of systematic and evolutionary microbiology, 2001, 51(2): 447−455. doi: 10.1099/00207713-51-2-447 [19] AKITA H, FUJINO Y, DOI K, et al. Highly stable meso-diaminopimelate dehydrogenase from an Ureibacillus thermosphaericus strain A1 isolated from a Japanese compost: Purification, characterization and sequencing [J]. AMB Express, 2011, 1(1): 43. doi: 10.1186/2191-0855-1-43 [20] ASADA C, SASAKI C, TAKAMATSU T, et al. Conversion of steam-exploded cedar into ethanol using simultaneous saccharification, fermentation and detoxification process [J]. BMC Microbiology, 2015, 176: 203−209. [21] 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展 [J]. 生物技术通报, 2016, 32(2):14−20. doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.002WANG G H, LIU J J, YU Z H, et al. Research Progress of Acidobacteria Ecology in Soils [J]. Biotechnology Bulletin, 2016, 32(2): 14−20.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.002 [22] SLOBODKIN A I, TOUROVA T P, KOSTRIKINA N A, et al. Tepidimicrobium ferriphilum gen. nov. , sp. nov. , a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(pt 2): 369-372. [23] WANG K, MAO H, LI X. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent [J]. Bioresource Technology, 2018, 249: 527−535. doi: 10.1016/j.biortech.2017.10.034 [24] BEFFA T, BLANC M, LYON P F, et al. Isolation of Thermus strains from hot composts (60 to 80 degrees C) [J]. EBioMedicine, 1996, 62(5): 1723−1727. [25] 袁滨, 柯丽娜, 洪丽明, 等. 双孢蘑菇新品种筛选试验与示范研究 [J]. 热带农业科学, 2018, 38(5):62−65,70.YUAN B, KE L N, HONG L M, et al. Screening trial and demonstration of new strains of Agaricus bisporus [J]. Chinese Journal of Tropical Agriculture, 2018, 38(5): 62−65,70.(in Chinese) [26] 柯斌榕, 蔡志英, 卢政辉, 等. 杏鲍菇和金针菇菌渣堆肥的发酵特性及双孢蘑菇栽培试验 [J]. 江苏农业科学, 2018, 46(22):153−155. doi: 10.15889/j.issn.1002-1302.2018.22.035KE B R, CAI Z Y, LU Z H, et al. Fermentation characteristics of spent mushroom substrate of Pleurotus eryngii and Flammulina velutiper and cultivation test of Agaricus bisporus [J]. Jiangsu Agricultural Sciences, 2018, 46(22): 153−155.(in Chinese) doi: 10.15889/j.issn.1002-1302.2018.22.035