Structure of Uraria crinita Chloroplast Genome
-
摘要:
目的 阐明岭南药食两用植物猫尾草的叶绿体基因组结构特征,为猫尾草资源的保护、利用和开发提供理论依据。 方法 采用高通量测序技术开展猫尾草叶绿体基因组测序,并通过生物信息方法进行拼接、注释、解析以及系统进化分析。 结果 猫尾草叶绿体基因组是149 774 bp的环状双链四段式分子,包含128个基因,GC含量为38.2%。猫尾草叶绿体基因组含有26 015个密码子,偏好以A或T结尾;存在110个简单重复序列,以A或T单核苷酸重复居多。序列比对和进化分析显示猫尾草与同属狸尾豆的亲缘关系最近。 结论 首次报道猫尾草叶绿体基因组的全序列,并明确其结构特点,为猫尾草的栽培育种、遗传多样性和资源利用等奠定基础。 Abstract:Objective Structure of the chloroplast genome from Uraria crinita, a plant used as food as well as herbal medicine in Lingnan area of China, was studied. Methods The whole chloroplast genome was obtained by high-throughput sequencing and then assembled, annotated, and analyzed by bioinformatic means. Results The genome was an annular quadripartite molecule of 149 774 bp that harbored 128 genes. It had a low GC content of 38.2% containing 26 015 codons that mostly ended with A or T. There were 110 loci of simple sequence repeat detected with the mononucleotide largely formed by A or T. An alignment and phylogenetic analysis on the sequence indicated a close relationship between U. crinita and U. lagopodioides. Conclusion The chloroplast genome and structure of U. crinita were unveiled for the first time to aid future studies on the cultivation, breeding, genetics, and utilization of the valuable plant. -
图 2 猫尾草叶绿体基因组的相对同义密码子使用情况
Ala-丙氨酸; Arg-精氨酸; Asn-天冬酰胺; Asp-天冬氨酸; Cys-半胱氨酸; Glu-谷氨酸; Gln-谷氨酰胺; Gly-甘氨酸;His-组氨酸; Ile-异亮氨酸; Leu-亮氨酸; Lys-赖氨酸; Met-甲硫氨酸; Phe-苯丙氨酸; Pro-脯氨酸; Ser-丝氨酸; Thr-苏氨酸; Trp-色氨酸; Tyr-络氨酸; Val-缬氨酸; end-终止密码子。
Figure 2. Relative synonymous codon usage of U. crinita chloroplast genome
Ala: alanine; Arg: arginine; Asn: asparagine; Asp: aspartate; Cys: cysteine; Glu: glutamate; Gln: glutamine; Gly: glycine; His: histidine; Ile: isoleucine; Leu: leucine; Lys: lysine; Met: methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Trp: tryptophan; Tyr: tyrosine; Val: valine; end: ending codon.
表 1 猫尾草叶绿体基因及其注释和功能归类
Table 1. Composition and classification of genes in U. crinita chloroplast genome
分类
Category功能
Function基因
Gene蛋白质编码基因
Protein-coding geneATP 合成酶
ATP synthaseatpA, atpB, atpE, atpF1, atpH, atpI 细胞色素b/f复合物
Cytochrome b/f complexpetA, petB1, petD1, petG, petL, petN NADH脱氢酶
NADH dehydrogenasendhA1, ndhB1*, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 光系统I
Photosystem IpsaA, psaB, psaC, psaI, psaJ 光系统II
Photosystem IIpsbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ 核糖体蛋白质大亚基
Ribosomal proteins large submitrps2, rps3, rps4, rps7*, rps8, rps11,rps12#*, rps14, rps15,rps161, rps18, rps19* 核糖体蛋白质小亚基
Ribosomal proteins small submitrpl21*, rpl14, rpl161, rpl20,rpl22*, rpl23*, rpl32,rpl33, rpl36 RNA集合酶
RNA polymeraserpoA, rpoB, rpoC11, rpoC2 其他基因
Other genesaccD, ccsA, cemA, clpP2, matK, rbcL, infA 假定叶绿体阅读框
Hypothetical chloroplast reading frameycf1, ycf2*, ycf32, ycf4 核糖体RNA
Ribosomal RNAsrrn4.5*, rrn5*, rrn16*, rrn23* 转运RNA
Transfer RNAstrnH-GUG, trnK-UUU1, trnM-CAU, trnM-CAU, trnV-UAC1, trnF-GAA, trnL-UAA1, trnT-UGU, trnS-GGA, trnfM-CAU, trnG-GCC, trnS-UGA, trnT-GGU, trnD-GUC, trnY-GUA, trnE-UUC, trnC-GCA, trnR-UCU, trnG-UCC1, trnS-GCU, trnQ-UUG, trnW-CCA, trnP-UGG, trnI-CAU, trnL-CAA*, trnV-GAC*, trnI-GAU1*, trnA-UGC1*, trnR-ACG*, trnN-GUU*, trnL-UAG 基因右上角的数字表示该基因所含的内含子数;#表示该基因存在反式剪接情况;*表示该基因为双拷贝基因。
Data on upper right corner stand for intron number in genes; # denotes trans-splicing in genes; * represents genes with two copies.表 2 猫尾草叶绿体基因组SSR统计
Table 2. SSR information on U. crinita chloroplast genome
类型
Type重复基序
Motif数量
Number比例
Ratio/%单核苷酸 Mononucleotide A/T 54 98.2 C/G 1 1.8 二核苷酸 Dinucleotide AG/CT 1 2.4 AT/AT 41 97.6 三核苷酸 Trinucleotide AAT/ATT 6 100.0 四核苷酸 Tetranucleotide AAAT/ATTT 4 57.1 AAGG/CCTT 1 14.3 AAGT/ACTT 1 14.3 AGAT/ATCT 1 14.3 总计 Total 110 -
[1] 中国植物志编辑委员会. 中国植物志: 四十一卷[M]. 北京: 科学出版社, 1995. [2] 罗献瑞. 实用中草药彩色图集(第3册)[M]. 广州: 广东科技出版社, 1994. [3] 张冬生, 江彩华, 肖腊兴, 等. 猫尾草的价值与栽培技术 [J]. 广东林业科技, 2007, 23(5):92−94,99.ZHANG D S, JIANG C H, XIAO L X, et al. The value and cultivation technology of Uraria crinita(linn. )desv. ex DC [J]. Guangdong Forestry Science and Technology, 2007, 23(5): 92−94,99.(in Chinese) [4] LIU X P, CAO Y, KONG H Y, et al. Antihyperglycemic and antihyperlipidemic effect of Uraria crinita water extract in diabetic mice induced by STZ and food [J]. Journal of Medicinal Plants Research, 2010, 4(5): 370−374. [5] 罗超, 刘霭明, 邢惟青, 等. 石参总黄酮抗氧化活性研究 [J]. 中国实验方剂学杂志, 2011, 17(13):198−201.LUO C, LIU A M, XING W Q, et al. Antioxidant effect of flavonoids from Uraria crinita [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(13): 198−201.(in Chinese) [6] 吴伟斌, 庞建新, 曹莹, 等. 石参总黄酮对一氧化氮致大鼠胰岛细胞损伤的保护作用 [J]. 天然产物研究与开发, 2013, 25(6):759−761,791. doi: 10.3969/j.issn.1001-6880.2013.06.007WU W B, PANG J X, CAO Y, et al. Protective effect of total flavonoids from urariacrinita root against injury of rat pancreatic islet cells caused by nitric oxide [J]. Natural Product Research and Development, 2013, 25(6): 759−761,791.(in Chinese) doi: 10.3969/j.issn.1001-6880.2013.06.007 [7] 凌志云. 石参人工栽培技术要点 [J]. 现代园艺, 2019(1):80.LING Z Y. Key points of artificial cultivation technology of Lithospermum japonicum [J]. Xiandai Horticulture, 2019(1): 80.(in Chinese) [8] 孙孟涛, 张峻鑫, 黄体冉, 等. 虎杖叶绿体基因组结构与变异分析 [J]. 生物工程学报, 2022, 38(5):1953−1964.SUN M T, ZHANG J X, HUANG T R, et al. Genome structure and variation of Reynoutria japonica Houtt. chloroplast genome [J]. Chinese Journal of Biotechnology, 2022, 38(5): 1953−1964.(in Chinese) [9] DANIELL H, LIN C S, YU M, et al. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering [J]. Genome Biology, 2016, 17(1): 134. doi: 10.1186/s13059-016-1004-2 [10] 樊守金, 郭秀秀. 植物叶绿体基因组研究及应用进展 [J]. 山东师范大学学报(自然科学版), 2022, 37(1):22−31.FAN S J, GUO X X. Advances in research and application of plant chloroplast genome [J]. Journal of Shandong Normal University (Natural Science), 2022, 37(1): 22−31.(in Chinese) [11] CAO D L, ZHANG X J, XIE S Q, et al. Application of chloroplast genome in the identification of traditional Chinese medicine Viola philippica [J]. BMC Genomics, 2022, 23(1): 540. doi: 10.1186/s12864-022-08727-x [12] 宋芸, 张鑫瑞, 贺嘉欣, 等. 基于叶绿体SSR分子标记的苦参种质资源遗传多样性分析 [J]. 作物杂志, 2023(1):30−37. doi: 10.16035/j.issn.1001-7283.2023.01.005SONG Y, ZHANG X R, HE J X, et al. Genetic diversity analysis of Sophora flavescens ait. germplasm resources based on cpSSR markers [J]. Crops, 2023(1): 30−37.(in Chinese) doi: 10.16035/j.issn.1001-7283.2023.01.005 [13] 向如双, 段宝忠, 孙伟, 等. 腊肠树叶绿体基因组序列特征及其系统发育分析 [J]. 环球中医药, 2022, 15(12):2266−2274.XIANG R S, DUAN B Z, SUN W, et al. The complete chloroplast genome of Cassia fistula L. and its phylogenetic analysis [J]. Global Traditional Chinese Medicine, 2022, 15(12): 2266−2274.(in Chinese) [14] 吴民华, 邹振宁, 叶晓霞, 等. 露兜树叶绿体基因组结构与序列特征分析 [J]. 中药新药与临床药理, 2023, 34(1):115−122.WU M H, ZOU Z N, YE X X, et al. Structure and sequence characteristics of chloroplast genome from Pandanus tectorius [J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2023, 34(1): 115−122.(in Chinese) [15] BENDICH A J. Circular chloroplast chromosomes: The grand illusion [J]. The Plant Cell, 2004, 16(7): 1661−1666. doi: 10.1105/tpc.160771 [16] ZHANG Y J, DU L W, LIU A, et al. The complete chloroplast genome sequences of five Epimedium species: Lights into phylogenetic and taxonomic analyses [J]. Frontiers in Plant Science, 2016, 7: 306. [17] DANIELL H, LEE S B, GREVICH J, et al. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes [J]. Theoretical and Applied Genetics, 2006, 112(8): 1503−1518. doi: 10.1007/s00122-006-0254-x [18] ZHAO X L, ZHU Z M. Comparative genomics and phylogenetic analyses of Christia vespertilionis and Urariopsis brevissima in the tribe desmodieae (fabaceae: Papilionoideae) based on complete chloroplast genomes [J]. Plants, 2020, 9(9): 1116. doi: 10.3390/plants9091116 [19] SOMARATNE Y, GUAN D L, WANG W Q, et al. The complete chloroplast genomes of two Lespedeza species: Insights into Codon usage bias, RNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae) [J]. Plants, 2019, 9(1): 51. doi: 10.3390/plants9010051 [20] MA L N, CUI P, ZHU J, et al. Translational selection in human: More pronounced in housekeeping genes [J]. Biology Direct, 2014, 9: 17. doi: 10.1186/1745-6150-9-17 [21] 黄琼林. 高良姜叶绿体基因组测序与特征分析 [J]. 热带作物学报, 2021, 42(1):1−6.HUANG Q L. Complete sequencing and analysis of chloroplast genome from Alpinia officinarum hance [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 1−6.(in Chinese) [22] 赵秋燕, 曹孟会, 李新艺, 等. 濒危植物峨眉凤仙花叶绿体基因组分析 [J]. 福建农业学报, 2023, 38(2):174−182. doi: 10.19303/j.issn.1008-0384.2023.02.007ZHAO Q Y, CAO M H, LI X Y, et al. Complete chloroplast genome of endangered Impatiens omeiana [J]. Fujian Journal of Agricultural Sciences, 2023, 38(2): 174−182.(in Chinese) doi: 10.19303/j.issn.1008-0384.2023.02.007 [23] 王化坤, 娄晓鸣, 章镇. 叶绿体微卫星在植物种质资源研究中的应用 [J]. 分子植物育种, 2006, 4(S1):92−98.WANG H K, LOU X M, ZHANG Z. Application in germplasm resource research using chloroplast simple sequence repeat [J]. Molecular Plant Breeding, 2006, 4(S1): 92−98.(in Chinese) [24] 师尚礼, 曹文侠, 陈耀, 等. 猫尾草产业发展现状与前景分析 [J]. 草原与草坪, 2020, 40(5):1−7. doi: 10.13817/j.cnki.cyycp.2020.05.001SHI S L, CAO W X, CHEN Y, et al. Analysis of current situation and prospect of characteristic forage industry of timothy in China [J]. Grassland and Turf, 2020, 40(5): 1−7.(in Chinese) doi: 10.13817/j.cnki.cyycp.2020.05.001